• Title/Summary/Keyword: Lateral Direction Approach

Search Result 33, Processing Time 0.021 seconds

Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome (슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과)

  • Kim, Seong Hwan;Lee, Tae-Hyub;Park, Yong-Beom
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • An anterior cruciate ligament (ACL) reconstruction is one of the most frequent surgical procedures in the knee joint, but despite the better understanding of anatomy and biomechanics, surgical reconstruction procedures still fail to restore rotational stability in 7%-16% of patients. Hence, many studies have attempted to identify the factors for rotational laxity, including the anterolateral ligament (ALL), but still showed controversies. Descriptions of the ALL anatomy are also confused by overlapping nomenclature, but it is usually known as a distinctive fiber running in an anteroinferior and oblique direction from the lateral epicondyle of the femur to the proximal anterolateral tibia, between the fibular head and Gerdy's tubercle. The importance of the ALL as a secondary restraint in the knee has been emphasized for successful ACL reconstructions that can restore rotational stability, but there is still some controversy. Some studies reported that the ALL could be a restraint to the tibial rotation, but not to anterior tibial translation. On the other hand, some studies reported that the role of ALL in rotational stability would be limited as a secondary structure because it bears loads only beyond normal biomechanical motion. The diagnosis of an ALL injury can be performed by a physical examination, radiology examination, and magnetic resonance imaging, but it should be assessed using a multimodal approach. Recently, ALL was considered one of the anterolateral complex structures, as well as the Kaplan fiber in the iliotibial band. Many studies have introduced many indications and treatment options, but there is still some debate. The treatment methods are introduced mainly as ALL reconstructions or lateral extra-articular tenodesis, which can achieve additional benefit to the knee stability. Further studies will be needed on the indications and proper surgical methods of ALL treatment.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

MR Evaluation of Tendinous Portions in the Subscapularis Muscle (견갑하근의 건 부분에 대한 자기공명영상을 이용한 분석)

  • Shon, Min-Soo;Koh, Kyoung-Hwan;Lee, Sung-Sahn;Yoo, Jae-Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2011
  • Purpose: The purpose of this study was to document the structural features of the tendinous portions within the non-pathologic subscapularis muscle by performing high resolution MR imaging of the shoulder. Materials and Methods: Between April 2007 and May 2010, we retrospectively obtained the MR scans of 88 consecutive young patients (88 shoulders) who were in their twenties. MRI and MR arthrography were performed using a 3.0-T system for the evaluation of glenohumeral instability and nonspecific shoulder pain. None of the patient in this study had any evidence of injury to the tendon or muscle belly of the subscapularis. On MR images, we recorded the transverse length of a stout tendinous band and the total tendinous portion of the subscapularis. In addition, we recorded the number of intramuscular tendinous slips of the susbscapularis. Results: The mean transverse length of the tendinous band was 15.0 mm (range: 8 to 20 mm). The mean transverse length of the total tendinous portion was 48.9 mm (range: 40 to 60 mm). The number of intramuscular tendinous slips on the base of the glenoid fossa was 3 in 20 (22.72%), 4 in 45 (51.14%) and 5 in 23 shoulders (26.14%). On the lateral portion, the intramuscular tendinous slips became gradually rounder and thicker and they gave converge in the superior direction. Conclusion: In this study, the structural features of the tendinous portions of the subscapularis on the MR scans were identified. This will in return give good justification for the lines to be pulled during biomechanical stimulation and also for the surgical approach to restore the biomechanical function.