• Title/Summary/Keyword: Lateral Control

Search Result 1,469, Processing Time 0.029 seconds

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

Structural Behavior Characteristics and Efficiency Evaluation of Outrigger System using Stiffness-Based Optimal Design Technique (강성최적설계법을 이용한 아웃리거 시스템의 거동특성 및 효율성 평가)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.123-130
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift and evaluate the structural behavior characteristics and efficiency for tall outrigger system subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of outrigger system is established and approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing technique of member is developed. Four types of 50 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

STATISTICAL STUDY OF SIZE OF THE CRANIUM IN PARENTS OF CHILDREN WITH CLEFT LIP AND/OR PALATE (순열, 구개열 환자 부모의 두부 방사선 사진의 통계적 연구)

  • Lee, Jong-Han;Shin, Hyo-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.3
    • /
    • pp.231-240
    • /
    • 1991
  • The parents of twenty-five patients with cleft lip(with or without cleft palate), CL(P) and the parents of fifteen non-cleft patients were studied. Area measurements of cranium of brain case from lateral and frontal roentgenograms. The most important finding of this investigation was that the CL/CP parents had a significantly smaller brain case than did the control subjects. A smaller brain case may well be one morphological characteristic predisposing toward the cleft anomaly. The results obtained were as follows, 1) Total area measurements for brain case of parents of CWCP patients were significantly smaller than those in the control group, on the frontal view. 2) A significantly smaller parietal and occipital region on the frontal view vas noted in the parents of CL/CP patients. 3) A significantly smaller parietal region on the lateral view was noted in the mothers of CL/CP patients. 4) A significantly smaller mastoid area on the lateral view was noted in the parents of CL/CP patients.

  • PDF

Behavioral Adaptation to an Adaptive Cruise Control System (적응순항제어시스템의 운전자 행동적응)

  • Lee, Woon-Sung;Kim, Young-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.82-88
    • /
    • 2006
  • The study investigated how an adaptive cruise control system induced behavioral adaptation in drivers using a full-scale driving simulator. Forty drivers with different driving styles participated in the study to compare headway-time, vehicle lateral position variation, and head and eye movement when driving with and without the adaptive cruise control system. Results showed that system induced positive behavioral adaptation by drawing consistency in driving speed and headway-time regardless of the driving styles. However, the results also showed that the drivers' reliance on the system induced negative adaptation including reduced lane keeping ability and reduced attention during driving. As a strategy to prevent negative adaptation, the study proposed information service to drivers with the adaptive cruise control system status and driving environment, and investigated effectiveness of the service. Twelve drivers participated in the experiment to compare headway-time, vehicle lateral position variation and subjective ratings when driving with and without the information service. Results showed that the information service assisted the drivers to maintain safer and more comfortable headway-time without impairing drivers' steering ability.

DRIVER BEHAVIOR WITH ADAPTIVE CRUISE CONTROL

  • Cho, J.H.;Nam, H.K.;Lee, W.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.603-608
    • /
    • 2006
  • As an important and relatively easy to implement technology for realizing Intelligent Transportation Systems(ITS), Adaptive Cruise Control(ACC) automatically adjusts vehicle speed and distance to a preceding vehicle, thus enhancing driver comfort and safety. One of the key issues associated with ACC development is usability and user acceptance. Control parameters in ACC should be optimized in such a way that the system does not conflict with driving behavior of the driver and further that the driver feels comfortable with ACC. A driving simulator is a comprehensive research tool that can be applied to various human factor studies and vehicle system development in a safe and controlled environment. This study investigated driving behavior with ACC for drivers with different driving styles using the driving simulator. The ACC simulation system was implemented on the simulator and its performance was evaluated first. The Driving Style Questionnaire(DSQ) was used to classify the driving styles of the drivers in the simulator experiment. The experiment results show that, when driving with ACC, preferred headway-time was 1.5 seconds regardless of the driving styles, implying consistency in driving speed and safe distance. However, the lane keeping ability reduced, showing the larger deviation in vehicle lateral position and larger head and eye movement. It is suggested that integration of ACC and lateral control can enhance driver safety and comfort even further.

A Study on the Effects of Immediate Side Shift to the Pantographic Reproducibility Index (Immediate Side Shift가 Pantographic Reproducibility Index에 끼치는 영향에 관한 연구)

  • Nam, Cheon Woo;Han, Kyung Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.12 no.1
    • /
    • pp.75-83
    • /
    • 1987
  • This study was designed to investigate the effects of TMJ incoordination to condylar movements, especially, the ISS. The sounds are one of the symptoms in TMJ incoordinated disorder, and it may cause the changes of mandibular movement trajectory. 19 students with only TMJ sounds and 16 students with no TMJ problems participated in this study. The subject performed Rt. lateral, Lt. lateral and protrusive movements, and repeated 3 times on each movement. Pantronic was used to record the measures of condylar movement paths. The obtained results were as follows : 1. The mean values of RISS and LISS in control group were 0.29mm, 0.36mm respectively, and those in experimental group were 0.49mm, 0.41mm repectively. The mean values of RISS was higher in experimental group than that of RISS in control group. 2. Correlation coefficients between PRI and RISS, LISS were slightly higher in experimental group than those in control group, therefore, PRI was more likely to be affected by ISS in experimental group. 3. In control group PRI was correlated to RISS, LORB, RPRO and LPRO, but in experimental group PRI was not correlated to those items. From the study, the author knew that the condylar movements was stable in control group.

  • PDF

Lateral Control of Vision-Based Autonomous Vehicle using Neural Network (신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어)

  • 김영주;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

Control of an Underwater Stereo Camera Embedded in a Single Canister Capable of Measuring Distance (거리측정이 가능한 단동형 수중 스테레오 카메라의 제어)

  • 이판묵;전봉환;이종무
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.90-95
    • /
    • 2000
  • This paper presents the vergence control of a parallel stereo camera and its application to underwater stereo camera to enhance the working efficiency of underwater vehicles that equips with manipulators in seabed operation. The stereo camera consists of two parallel lenses mounted on a lateral moving base and two CCD cameras mounted on a longitudinal moving base, which is embedded in a small pressure canister for underwater application. Because the lateral shift is related to the backward shift with a nonlinear relation, only one control input is needed to control the vergence and focus of the camera with a special driving device. We can get a clear stereo vision with the camera for all the range of objects in air and in water, especially in short range objects. The control system of the camera is so simple that we are able to realize a small stereo camera system and to apply it to a stereo vision system for underwater vehicles. This paper also shows how to acquire the distance information of an underwater object with this stereo camera. Whenever we focus on an underwater object with the camera, we can obtain the three-dimensional images and the distance information in real-time.

  • PDF

Control of an Underwater Stereo Camera Embedded in a Single Canister Capable of Measuring Distance (거리측정이 가능한 단동형 수중 스테레오 카메라의 제어)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • This paper present the control of the image disparity of a parallel stereo camera and its application to an underwater stereo camera to enhance the working efficiency of underwater vehicles that are equiped with manipulators in seabed operation. The stereo camera consists of two parallel lenses mounted on a lateral moving base and two CCD cameras mounted on a longitudinal moving base, which is embedded in a small pressure canister for underwater application. Because the lateral shift is related to the backward shift with a nonlinear relation, only one control input is needed to control the vergence and focus of the camera with a special driving device. We can get clear stereo vision with the camera for all the range of objects in air and in water, especially in short range object. The control system of the camera is so simple that we are able to realize a small stereo camera system and apply it to a stereo vision system for underwater vehicles. This paper also shows how to acquire the distance information of an underwater object with this stereo camera. Whenever we focus on an underwater object with the camera, we can obtain three-dimensional images and distance information in real-time.

  • PDF

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.