• Title/Summary/Keyword: Lateral Bearing Capacity

Search Result 165, Processing Time 0.024 seconds

Experimental study on hysteretic properties of SRC columns with high steel ratio

  • Lu, Xilin;Yin, Xiaowei;Jiang, Huanjun
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.287-303
    • /
    • 2014
  • 8 steel reinforced concrete (SRC) columns with the encased steel ratio of 13.12% and 15.04% respectively were tested under the test axial load ratio of 0.33-0.80 and the low-frequency cyclic lateral loading. The cross sectional area of composite columns was $500mm{\times}500mm$. The mechanical properties, failure modes and deformabilities were studied. All the specimens produced flexure failure subject to combined axial force, bending moment and shear. Force-displacement hysteretic curves, strain curves of encased steels and rebars were obtained. The interaction behavior of encased steel and concrete were verified. The hysteretic curves of columns were plump in shapes. Hysteresis loops were almost coincident under the same levels of lateral loading, and bearing capacities did not change much, which indicated that the columns had good energy-dissipation performance and seismic capacity. Based on the equilibrium equation, the suggested practical calculation method could accurately predict the flexural strength of SRC columns with cross-shaped section encased steel. The obtained M-N curves of SRC columns can be used as references for further studies.

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

Composite effects of circular concrete-filled steel tube columns under lateral shear load

  • Faxing Ding;Changbin Liao;Chang He;Wei Gao;Liping Wang;Fei Lyu;Yuanguang Qiu;Jianjun Yang
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.123-137
    • /
    • 2023
  • To fully understand shear mechanisms and composite effects of circular concrete-filled steel tube (CFST) columns, systematic numerical investigations were conducted in this paper by improved finite element models. The triaxial plastic-damage constitutive model of the concrete and the interactions between the concrete and steel tube were considered. Afterwards, the critical and upper bound shear span ratios of the circular CFST column under lateral shear loading were determined. The composite effects between the two materials were analyzed by comparing the shear resistance with plain concrete column and hollow steel tube. In addition, a method that predicts the shear bearing capacity of a circular CFST column was proposed. The confining effects on the concrete core and the restraining effects on the steel tube were considered in this method. The proposed formula can predict more accurate results than the methods in different codes and references.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

An Comparative Study on the Method of Determining Allowable Horizontal Bearing Capacity of Piles (말뚝의 허용횡방향지지력 결정법의 비교연구)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.267-274
    • /
    • 2021
  • Among several methods for determining the allowable lateral resistances of piles, the subgrade reaction method and ultimate lateral resistance method are generally used. To determine the effects of the soil conditions, pile head restraint conditions, and pile lengths on determining the allowable lateral resistances of piles, computations of the allowable lateral resistances of piles using the two methods were executed, and the computation results were compared. For piles in soft cohesive soil, the pile design is governed by the allowable lateral resistance of a pile from subgrade soil reaction method regardless of the pile head restraints conditions and pile lengths. The allowable lateral resistance of a pile from the ultimate lateral resistance governs the design as the undrained shear strength increases. Except for the case of a short pile, which is installed in loose granular soil, the allowable lateral resistance of a pile from ultimate lateral resistance governs the design of laterally loaded piles. According to this study, computation of the ultimate lateral resistance of a pile is needed, even though some opinions suggest that the design of a laterally loaded pile is satisfied only by the subgrade reaction method. The pile width barely influences the coefficient of horizontal subgrade reaction. Realistically, the effect of the pile width can be disregarded in the condition of common pile widths of 20~90cm.

Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles (모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Park, Byung-Soo;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

A Study on the Behavior of Deformation in Soft Soils Subjected to Lateral Flow (측방유동을 받는 연약지반의 변형거동에 관한 연구)

  • 안종필;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.25-40
    • /
    • 1994
  • In order to investigate behavior of lateral flow by plasticity of soils and construction control due to it, in the case of unsymmetrical surcharge load on the soft soils, we examine the existing theoretical background, and compared and analysed the experimental results by model test. After model test fabricated by model test apparatus, which made full remolding samples of soft soils, we observed the state of behavior for deformation with increasing load step to constant time interval. The critical surcharge and ultimate capacity showed tendency to approach to the proposed value of Jaky and Meyerhof, and the lateral flow pressure of which the maximum value was acted on the depth calculated by z/H=0.26+1.71cu and one third value of the maximum lateral flow pressure acted on the ground surface, approach the trapezoid distribution And maximum lateral flow pressure will be calculated by proposed equation of Hong or simple equation which($\alpha=0.4$) the flow pressure coefficient . of proposed equation by Tschebotarioff exchanged to($\alpha=K_0$) . Basides, the failure surcharge by [(q/$y_m$)-q] and [$S_y-(y_m/S_y)$] showed the smaller than ultimate bearing capacity, especially failure criteria line of control diagram of [$S_y(y_m/S_y)$] will be calculated by following equation. $S_y.=3.15exp[-0.58(y_m/S_y)$

  • PDF

Reliability Based Stability Analysis and Design Criteria for pile Foundation (신뢰성이론에 의한 말뚝기초의 안정해석 및 설계규준)

  • 이증빈;김영인;박철수;이정식;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.102-107
    • /
    • 1991
  • This study a reliability based design criteria for the Pile foundation, Which is common type of bridge founfation, and also proposes the theoretical bases limit state equations of stalbility analvsis of Pile foundation and the uncertainty measuring algorithms of each equation are also derived by MFOSM using the pile reations of displacement method, Terzaghi's bearing capacity formula, and chang's lateral load formula. The Level of uncertainties comesponding to these algorithms are proposed approprite values considering our actuality. It may be asserted that the proposed LRFD reliability based design criteria for the pile foundation may have to be incorporated in to the current Highway Bridge Design codes as a design provision corresponding to the USD(or LFD) provisions of the current Highway Bridge Design Code.

  • PDF