• 제목/요약/키워드: Lateral

검색결과 12,030건 처리시간 0.035초

Effective Lateral Canthal Lengthening with Triangular Rotation Flap

  • Kim, Min Soo
    • Archives of Plastic Surgery
    • /
    • 제43권4호
    • /
    • pp.311-315
    • /
    • 2016
  • In Korea, lateral canthoplasty, along with medial epicanthoplasty, has become popular over the past years to widen the horizontal length of the palpebral fissure. However, the effect of the surgery differs greatly depending on the shape and structure of the eyes. If over-widened, complications such as eversion, scarring, and conjunctival exposure may occur. Thus, the author of this study suggests a more effective and safe method for lateral canthal lengthening that causes minimal complications. A total of 236 patients underwent lateral canthoplasty between July 2007 and December 2015. For each patient, a triangular flap 4-5 mm away from the lateral canthus was elevated and rotated 45 degrees laterally while the continuity of the lower eyelid gray line was maintained. A new lateral canthus was created by fixating the rotation flap to the lateral orbital rim with minimal skin trimming and tension-free sutures, preventing relapse and maintaining a triangular shape. In more than 95% of cases, effective and satisfactory extension was achieved. On average, a 3 mm extension of the lateral canthus was achieved. There were minor complications such as wound dehiscence, webbing, and scarring, which were easily corrected. The author not only extended the lateral canthus 3-4 mm laterally but also maintained the continuity of the gray line on the lower lid as a more natural-looking triangular shape, while minimizing complications such as webbing and conjunctival exposure.

모래지반에서 반복수평하중을 받는 항타말뚝의 거동 (Behavior of Laterally Cyclic Loaded Piles Driven into Sand)

  • 백규호;박원우;김영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

노년 여성의 몸통 측면 자세에 따른 체형 판별 (Discrimination of Lateral Torso Types by Posture for Older Women)

  • 박선미;한현숙
    • 한국의류산업학회지
    • /
    • 제26권1호
    • /
    • pp.35-43
    • /
    • 2024
  • This study aimed to objectively classify the lateral torso posture types and functions of older women. We used 3D body scan data of 119 women aged 70-85 years from the 6th SizeKorea project. First, we defined three torso axes to represent the lateral torso posture types: posterior waist-back, back-cervical, and whole torso axes. Next, we asked experts to select one of four lateral torso posture types-stooped, straight, leaning back, and swayback postures-by looking at the lateral photographic data of 119 older women. To identify the axis that best represented each lateral torso posture type, a discriminant analysis was conducted using the angle of each of the three torso axes as an independent variable and an expert's visual classification as a dependent variable. Based on the analysis, the whole torso and backcervical axis angles were selected as variables for judging lateral torso posture types. Subsequently, we developed a classification function to determine which of the four lateral torso posture types of a particular participant was applicable for a new individual. The method developed in this study is significant in that it enables the objective classification of the lateral torso postures types of older women.

CHARACTERIZING THE MINIMALITY AND MAXIMALITY OF ORDERED LATERAL IDEALS IN ORDERED TERNARY SEMIGROUPS

  • Iampan, Aiyared
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.775-784
    • /
    • 2009
  • In 1932, Lehmer [4] gave the definition of a ternary semigroup. We can see that any semigroup can be reduced to a ternary semigroup. In this paper, we give some auxiliary results which are also necessary for our considerations and characterize the relationship between the (0-)minimal and maximal ordered lateral ideals and the lateral simple and lateral 0-simple ordered ternary semigroups analogous to the characterizations of minimal and maximal left ideals in ordered semigroups considered by Cao and Xu [2].

취성소재 연삭마멸에서의 측면균열에 관한 연구 (Lateral Crack in Abrasive Wear of Brittle Solids)

  • 안유민;박상신;최상현
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.46-51
    • /
    • 1999
  • An analytical model about lateral crack occurring in abrasive wear of brittle solids is developed. Stress field around the lateral crack and stress intensity factor at the crack tip are analytically modeled. Abrasive wear by abrasive particle is experimentally studied. In soda-lime glass, it is observed that chipping by lateral crack occurs and produces the greatest material removal when normal load applied by the abrasive particle is about 1.5∼3.0 N. The prediction of lateral crack length from the model is compared with the experimentally measured length in soda-lime glass.

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

무도상 판형교의 횡방향 동적거동특성 분석을 위한 실험적 연구 (Field Test to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Railway Bridge without Ballast)

  • 오지택;김현민;박옥정;박찬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.591-595
    • /
    • 2003
  • Field measurements were conducted to analysis lateral dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu Line were selected for test. According to the each bridge, dynamic lateral deflections and accelerations were measured. From the present study, it was observed that dynamic lateral amplification phenomena caused by a fluctuation of lateral force were occurred under the current running circumstances. Lateral deflections were occurred below than that specified in Korean railway bridge specification, but lateral accelerations is a match for vertical accelerations. From now on, it is in need a plan to reduce lateral accelerations for the conventional railway Line speed up.

  • PDF

띠철근 기근 형태에 따른 철근콘크리트 기둥의 휨 거동 에 관한 연구 (A Study on Flexural Behavior of R.C. Columns with the configuration of Lateral Ties)

  • 조세용;양근혁;이영호;정헌수
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.53-60
    • /
    • 2000
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns subjected to lateral and constant axial loads. The main experimental variables are concrete strength, the configuration of lateral ties, and the amount of lateral ties. Test results indicated that the steel configuration in column sections plays an important role in column behavior, and a proper configuration of lateral ties can obtain more ductile by the reduction of the space of lateral ties. Also, this experiment show that the utlization of high-strength concrete in columns properly designed on ACI Code takes less ductile. Therefore, we can conclude that the design of high-strength concrete columns under high axial loads requires more lateral ties than ACI Code.

Lateral buckling formula of stepped beams with length-to-height ratio factor

  • Park, Jong Sup
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.745-757
    • /
    • 2004
  • Lateral-torsional buckling moment resistances of I-shaped stepped beams with continuous lateral top-flange bracing under a single point load on the top flange and negative end moments were investigated. Stepped beam factors and a moment gradient correction factor suggested by Park et al. (2003, 2004) were used to develop new lateral buckling formula for beam designs. From the investigation of finite element analysis (FEA), new lateral buckling formula of beams with singly or doubly stepped member changes and with continuous lateral top-flange bracing subjected to a single point load on top flange and end moments were developed. The new design equation includes the length-to-height ratio factor to account for the increase of lateral-torsional buckling moment resistance as the increase of length-to-height ratio of stepped beams. The calculation examples for obtaining lateral-torsional buckling moment resistance using the new design equation indicate that engineers should easily determine the buckling capacity of the stepped beams.