• Title/Summary/Keyword: Late miller

Search Result 7, Processing Time 0.02 seconds

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

A Study on Combustion Characteristics of Spark-Ignited Engine with Different Late Intake Valve Closing for Miller Cycle (밀러사이클 적용 스파크점화기관의 후기 흡기밸브 닫힘각 변화에 따른 연소성능 연구)

  • Chung, J.H.;Kang, S.J.;Kim, J.S.;Jeong, S.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.141-148
    • /
    • 2015
  • In order to research engine characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle, two cam for LIVC(Late Intake Valve Closing) were designed and fabricated an prototype valvetrain. And intake valve closing timing were adjusted to build low compressing and high expansion cycle for HEV. In experimental study, it were investigated with different engine speed, spark timing and air-fuel ratio to compare base cam and LIVC cam type. It was found that the volumetry efficiency and effective work of compression process were decreased in case of LIVC cam. When compared with the existing results, the maximum pressure in the cylinder was reduced about 12~13 bar and the volumetric efficiency was reduced about 16%.

A Thermodynamic Analysis on the Performance with turning Diesel Cycle into Diesel-Atkinson Cycle (디젤기관의 아트킨슨 사이클화에 따른 제반성능의 열역학적 해석)

  • 노기철;정양주;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In order to recognize thermal efficiency and power improvement in case that diesel cycle is turned into diesel-atkinson cycle, the fuel-air diesel-atkinson cycle considered gas exchange process is analyzed non-dimensionally and thermodynamically. As a result, in case of diesel-atkinson cycle, as expansion ratio is increased, thermal efficiency and mean effective pressure is increased and it has maximum value at Rec=1. When diesel cycle is turned into diesel-atkinson cycle by late intake valve closing timing, thermal efficiency and power is decreased because of the decline of effective compression ratio and intake airflow, but it could be compensated by increase of compression ratio or super-charged. In case compression ratio is compensated, Rec appears 1 around 100$^{\circ}$ ABDC, and it is expected that thermal efficiency is enhanced by 14.3% compared with conventional diesel cycle. In case compression ratio and intake airflow are compensated simultaneously, super-charged pressure is demanded 2.06bar at Rec=1 and it is more efficient when only compression ratio is compensated in the view point of thermal efficiency.

Scanning Electron Microscopic Studies on the Features of Compression Wood, Opposite Wood, and Side Wood in Branch of Pitch Pine(Pinus rigida Miller) (리기다소나무 (Pinus rigida Miller) 지재(枝材)의 압축이상재(壓縮異常材), 대응재(對應材) 및 측면재(側面材) 특성(特性)에 관한 주사전자현미경적(走査電子顯微鏡的)인 연구(硏究))

  • Eom, Young-Geun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 1985
  • In Korea, a study on the anatomical features of pitch pine (pinus rigida Miller) branch wood through photo-microscopical method was reported in 1972 by Lee. Therefore, as a further study of Lee's on the anatomical features in branch wood of pinus rigida miller that grows in Korea, compression wood, opposite wood, and side wood were selected and treated for the purpose of comparing their structures revealed on cross and radial surface through scanning electron microscope in this study. The obtained results in this study were summarized as follows; 1. The trachied transition from earlywood to late wood is very gradual and the tracheids are nearly regular in both arrangement and size in compression wood but this transition in opposite wood and side wood is abrupt and the tracheids in opposite wood and side wood are less regular than those in compression wood. Also, the annual ring width of opposite wood is narrower than that of compression wood or side wood and the rays revealed on cross surface of side wood are more distinct than compression wood and opposite wood rays. 2. The tracheids of compression wood show roundish trends especially in earlywood but those of opposite wood and side wood show some angular trends. And intercellular space, helical cavity, and spiral check are present in both earlywood and latewood of compression wood but not present in opposite wood and side wood irrespective of earlywood and latewood. 3. The wall thickness of latewood tracheid is similar to that of earlywood tracheid in compression wood whereas the wall thickness of latewood tracheid is by far thicker than that of earlywood tracheid in opposite wood and side wood and the S3 layer of secondary wall is lack in compression wood tracheid unlike opposite wood and side wood tracheid. 4. The tracheids in compression wood are often distorted at their tips unlike those in opposite wood and side wood and the bordered pit in compression wood tracheid is located at the bottom of helical groove unlike that in opposite wood and side wood tracheid. 5. The bordered pits in radial wall of opposite wood and side wood tracheids are oval in shape but those of compression wood tracheids show some modified oval shape. 6. In earlywood of side wood, the small apertures of cross-field pits are roundish triangle to rectangle and the large one are fenestriform through the coalition of two small ones. However, the small apertures of cross-field pits are upright oval and the large ones are procumbent oval shape in earlywood of opposite wood and the apertures of cross-field pits in compression wood are tilted bifacial convex lens shape in earlywood and slit in late wood because of the border on tracheid side.

  • PDF

Computational predictions of improved of wall mechanics and function of the infarcted left ventricle at early and late remodelling stages: comparison of layered and bulk hydrogel injectates

  • Kortsmit, Jeroen;Davies, Neil H.;Miller, Renee;Zilla, Peter;Franz, Thomas
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.41-55
    • /
    • 2014
  • Acellular intra-myocardial biomaterial injections have been shown to be therapeutically beneficial in inhibiting ventricular remodelling of myocardial infarction (MI). Based on a biventricular canine cardiac geometry, various finite element models were developed that comprised an ischemic (II) or scarred infarct (SDI) in left ventricular (LV) antero-apical region, without and with intra-myocardial biomaterial injectate in layered (L) and bulk (B) distribution. Changes in myocardial properties and LV geometry were implemented corresponding to infarct stage (tissue softening vs. stiffening, infarct thinning, and cavity dilation) and injectate (infarct thickening). The layered and bulk injectate increased ejection fraction of the infarcted LV by 77% (II+L) and 25% (II+B) at the ischemic stage and by 61% (SDI+L) and 63% (SDI+B) at the remodelling stage. The injectates decreased the mean end-systolic myofibre stress in the infarct by 99% (II+L), 97% (II+B), 70% (SDI+L) and 36% (SDI+B). The bulk injectate was slightly more effective in improving LV function at the remodelling stage whereas the layered injectate was superior in functional improvement at ischemic stage and in reduction of wall stress at ischemic and remodelling stage. These findings may stimulate and guide further research towards tailoring acellular biomaterial injectate therapies for MI.

Effects of Nitrogen and Phosphorus Fertilization on Nutrient Dynamics and Litterfall Production of Pinus rigida and Larix kaempferi (질소와 인 시비가 리기다소나무와 낙엽송의 낙엽 생산량 및 양분 동태에 미치는 영향)

  • Lee, Im-Kyun;Son, Yow-Han
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 2006
  • Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production were determined in adjacent 41-year-old plantations of Pinus rigida Miller and Larix kaempferi Gordon on a similar soil in Yangpyeong, Gyeongggi Province. Litterfall production were significantly different among sampling dates and between the tree species, whereas it was not significantly different among the treatments. Total annual litterfall production was 6,377 kg/ha for P. rigida and 4,778 kg/ha for L. kaempferi, respectively. Litterfall nutrient concentrations of L. kaempferi were higher than those of P. rigida. For both tree species, litterfall nutrient concentrations were highest in summer when the least litterfall production occurred, and lowest in late-autumn when the greatest litterfall production occurred, except for Ca in the L. kaempferi stand. The amount of total organic matter in the forest floor of P. rigida and L. kaempferi plantations were 24,296 kg/ha and 10,763 kg/ha, respectively. Forest floor N and P contents were 126, 10 kg/ha for P. rigida and 102, 8 kg/ha for L. kaempferi, respectively.

Fatty Acid and Amino Acid Compostions of Gugiseun (Lycuim chinense Miller) Depending on Variety and Harvest Time (채취시기 및 품종에 따른 구기순의 지방산과 아미노산조성)

  • 노재관
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.211-217
    • /
    • 1996
  • As a part of studies on the development of a Gugisuen(Lycium chinense M.), which is one of the unutilization of waste resources, we investigated the composition of fatty acid and amino acid according as picking period and varieties of Gugisuen. The chemical components of Gugisuen were as follows : 1. Proximate composition of Gugisuen were Cheongyang native had the highest contents of crude lipid, crude protein, total sugar, and the contents of crude protein, total sugar, and reducing sugar was the highest picked on June 20. 2. The contents of $P_2O_5$, $K_2O$, CaO, MgO, Cu, and Mn were higher in Cheongyang native than that of other varieties. And mineral contents of Gugisuen picked on May 10 were the highest. 3. The major fatty acids were linoleic, linolenic acids, and these unsaturated fatty acids composed about 50% of total fatty acids. Fatty acid compositions between each varieties were not significant, and those components were the highest in Gugisuen picked on May 10. 4. Eighteen amino acids were identified from Gugisuen, glutamic acid, the highest content was $10.05\sim10.94%$ and these contents increased in the order to aspartic acid > glycine > alanine > leucine > lysine. The contents of serine, arginine, methionine, cystine-2 and isoleucine were higher in late harvest time and glutamic acid and tryptophane were higher in early harvest time.

  • PDF