• Title/Summary/Keyword: Late Cretaceous

Search Result 224, Processing Time 0.03 seconds

Structural characteristics of Humboldt Range, northwest Nevada, U. S. A. (미국 북서 네바다주 험볼트 산맥의 구조분석)

  • 정상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.131-148
    • /
    • 1999
  • Characteristics and complex structures in the northwest Nevada, U.S.A. are de-veloped due to relative tectonic movement of major tectonostratigraphic terranes. Theresearch area is composed of autochthonous rocks of both Early Triassic Koipato Group and Middle Triassic Star Peak Group, which is located in the Humboldt Range, northwest Nevada, U.S.A. The present research is focused on deformation history, related fabric development, and state of regional paleostress during the Jurassic to Late Cretaceous. The Triassic autochthonous rocks in the Humboldt Range, Nevada, U.S.A. display polyphase deformation due to E- to ESE-directed tectonic transport of the Fencemaker allochthon over autochthonous rocks of the Humboldt Range. Structures involving the Mesozoic foreland deformation are development of intense foliation, different styles of folds, minor thrusts, transposed layering, and strong mylonitization. These tectonic structures are mostly developed along the western flank of the Humboldt Range, and are reported as the first deformation of the Mesozoic foreland in the Humboldt Range, Nevada, U.S.A. Regional principal stress(${\sigma}_1$) is interpreted to be E to ESE between the Jurassic and Early Cretaceous on the basis of orientations of strongly developed $D_1$ structures. The deformation during the Middle to Late Cretaceous, is characterized by development of consistent N- to NNE-trending metamorphic quartz veins, and shear zones parallel to pre-existing $D_1$ foliation. Orientations of metamorphic quartz veins as well as other kinematic indicators are N to NNE and are interpreted as those of regional principal stress(${\sigma}_1$) during the Late Cretaceous. The sense of shear applied in the Humbololt Range is dextral and is caused by reactivation of early-formed $D_1$ structures. These results reflect counterclockwise rotation of regional principal paleostress in the Humboldt Range from the Jurassic to Late cretaceous. Finally, development of both shear band cleavage and S/C mylonitic fabrics indicates that the shear zones in the Humboldt Range reflect involvement of enhanced non-coaxial flow during bulk shortening in mylonitic formation.

  • PDF

K-Ar Ages of Dinosaur Egg Nest found in Cretaceous Formation of Aphaedo, Jeollanam-do, Korea (전라남도 압해도 백악기층에서 발견된 공룡알 둥지의 K-Ar 연대)

  • Rhee, Chan-Young;Kim, Bo-Seong;Kim, Myung-Gee;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • In September 2009, a perfectly preserved fossil of a dinosaur egg nest was discovered in the Cretaceous formations of the Aphaedo area in Shinan, Jeollanam-do, South Korea. In order to estimate the age of dinosaur eggshells and the depositional age of the Cretaceous sediments in Aphaedo area, a whole-rock K-Ar dating was carried out on volcanic pebbles showing a sedimentary structure contemporaneous with the Aphaedo strata, acidic tuffs overlaying the strata conformably, and acidic dike rocks intrude to both of them. Volcanic rocks observed in the strata are 3-20 cm in diameter as pebbles found in lenticular conglomerate and pebble bearing mudstone strata. K-Ar whole-rock dating was performed on six different volcanic pebbles which show a sedimentary structure contemporaneous with the dinosaur egg nest contained in the strata, and all samples show Late Cretaceous ages: Cenomanian ($97.6{\pm}1.9$Ma), Coniacian ($87.6{\pm}1.7$ Ma), Santonian ($84.5{\pm}1.7$Ma) or Campanian ($82.5{\pm}1.6$, $77.3{\pm}1.5$, $75.7{\pm}1.5$ Ma). The K-Ar whole-rock age of acidic tuffs overlaying the Cretaceous formation conformably was estimated to be Campanian ($79.2{\pm}1.6$ or $77.3{\pm}1.5$Ma), when the dating was carried out under the same conditions. The acidic dike intruding both Cretaceous formation and acidic tuff showed a K-Ar whole-rock age of $70.9{\pm}1.4$Ma (Campanian). Therefore, the depositional age of the Cretaceous formation in the Aphaedo area and the time when dinosaurs lived in the study area are considered to be 77-83 Ma. Such results indicate that the ages of dinosaur eggshells from Aphaedo area can be correlated with the ages of the Seonso Formation (81Ma) with dinosaur egg nest fossils and the Uhangri Formation (79-81Ma) with dinosaur, pterosaur and web-footed bird tracks.

A Study on the Paleomagnetism of Southern Korea since Permian (페름기(紀) 이후(以後) 한국(韓國)의 고지자기(古地磁氣)에 관(關)한 연구(硏究))

  • Kim, Kwang Ho;Jeong, Bong II
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.67-83
    • /
    • 1986
  • Oriented hand samples were collected from Gobangsan Formation and Nogam Formation in the north of Danyang and south of Yeongchun, from Bansong Group in and around Danyang, from Nampo Group in Chungnam Coalfield, from Gyeongsang Supergroup distributed from Waegwan through Daegu to Gyeongsan and from Daegu to Goryong, and from volcanic flows in Jeongog area and Jeju Island to study the paleomagnetism of southern Korea since Permian. Stepwise alternating field and thermal demagnetization experiments were carried out to determine optimum fields and temperatures. Observed mean paleomagnetic directions are as follows: $D=331.5^{\circ}$, $I=25.1^{\circ}$, $a95=12.8^{\circ}$ for Permian, $D=325.6^{\circ}$, $I=46.1^{\circ}$, $a95=11.8^{\circ}$ for Triassic, $D=313.4^{\circ}$, $I=43.1^{\circ}$, $a95=16.0^{\circ}$ for early Jurassic, $D=41.3^{\circ}$, $I=64.6^{\circ}$, $a95=4.5^{\circ}$ for early Cretaceous, $D=28.3^{\circ}$, $I=58.1^{\circ}$, $a95=2.3^{\circ}$ for late Cretaceous, $D=2.0^{\circ}$, $I=55.8^{\circ}$, $a95=6.6^{\circ}$for Quaternary. To describe the tectonic translocation of southern Korean block, northern Eurasian continental block was used as a reference frame. For each age since Permian the expected northern Eurasian field directions in terms of paleolatitude and declination were calculated. The paleolatitudes of Permian ($13.2^{\circ}N$) and early Jurassic ($25.1^{\circ}N$) obtained from the study area are quite different from those of Permian ($66.0^{\circ}N$) and early Jurassic ($68.1^{\circ}N$) which are expected for northern Eurasia. The declinations of Permian ($331.5^{\circ}$) and early Jurassic ($313.4^{\circ}$) are also quite different from those of the Permian ($56.6^{\circ}$) and the early Jurassic ($47.5^{\circ}$) expected for northern Eurasia. The Cretaceous paleolatitude is similar to the expected within error limit, but the declination for the same period is significantly different from that of the expected for the northern Eurasia. From the above evidences it is suggested that the south Korean land mass had moved from low latitude in Permian to north and sutured to northern continental block since early Jurassic. The relative rotations of early Cretaceous($27.4^{\circ}$) and late Cretaceous($10.8^{\circ}$) to northern Eurasian continent reveal that the Korean land mass might be rotated clockwise in two different times, probably in late Early Cretaceous and in Tertiary.

  • PDF

Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Peninsula (한반도 남동부 경상호의 조구조 배경과 호화산작용)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.367-383
    • /
    • 2012
  • The Gyeongsang Arc is the most notable of the Korea Arc that is composed of several volcanic arcs trending to NE-SW direction in the Korean peninsula. The Hayang Group has many volcanogenic interbeds of lava flows by alkaline or calc-alkaline basaltic volcanisms during early Cretaceous. Late Cretaceous calc-alkaline andesitic and rhyolitic volcanisms reconstructed the Gyeongsang Arc that consist of thick volcanic strata on the Hayang Group in The Gyeongsang Basin. The volcanisms characterize first eruptions of basaltic and andesitic lavas with small pyroclastics, and continue later eruptions of dacitic and rhyolitic ash-fall and voluminous ash-flow with some calderas and then domes and dykes. During the Early Cretaceous (about 120 Ma), oblique subduction of the Izanagi plate to NNW from N direction results in sinistral strike-slip faults to open a pull-apart basin in back-arc area of the Gyeongsang Arc, in which erupted lava flows from generation of magma by a decrease in lithostatic pressure. Therefore the Gyeongsang Basin is interpreted into back-arc basin reconstructed by a continental rifting. Arc volcanism began in about 100 Ma with exaggeration of the back-arc basin in the Gyeongsang, and then changed violently to construct volcanic arcs. During the Late Cretaceous (about 90 Ma), orthogonal subduction of the Izanagi plate to NW from NNW direction ceased development of the basin to prolong violent volcanisms.

The Geodynamic Evolution of the Chugaryeong Fault Valley in a View Point of Paleomagnetism (고지자기학적 관점에서 본 추가령단층곡의 생성과 진화)

  • 이윤수;민경덕;황재하
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.555-571
    • /
    • 2001
  • The dynamic evolution of the Chugaryeong fault valley is studied by paleomagnetic works on 163 samples at 16 sites from Late Cretaceous and Quaternary volcanic rocks in the valley. Conglomerate test and stepwised thermal/alternating field demagnetization indicate that all the characteristic directions are of primary origin. Paleomagnetic pole ponsition(216.8$^{\circ}$E/7l .6$^{\circ}$N; dp=7.1$^{\circ}$, dm=10.0$^{\circ}$) for the upper par of the Jijangbong Volcanic Complex Is indistinguishable from the coeval retference pole position from the Gyeongsang Basin, which further substanciates the reliability of the Paleomagnetic data. This indicates the study area has not undergone any tectonic rotation since Late Cretaceous by uy significant reactivation of the Chugaryeong fault valley. The Quaternary pole position (134.2$^{\circ}$E/86.5$^{\circ}$N; $A_{95}$=7.1 $^{\circ}$) from the Jeongog Basalt reflects the present geocentric axial dipole field for the area, supporting the above conclusion. Unlike the upper part, paleomasnelic directions of the lower part of the Jijangbong Volcanic Complex show random distrinution between sites. We interpret that the early stage of the volcanic activity was created by sinistral strike slip motion of the Chugaryeong fault during early Late Cretaceous. The creation and evolution of the Chugaryeong fault valley emphasize the significance of the kinematic FR (folding ruler) model in east Asia.

  • PDF

Ore and Fluid Inclusions of the Tongyeong Gold-Silver Deposits (통영(統營) 금광상(金鑛床)의 광석(鑛石)과 유체포유물(流體包有物))

  • Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.16 no.4
    • /
    • pp.245-251
    • /
    • 1983
  • The Tongyeong gold-silver deposits is located in Chungmu City, the southern end of Korean peninsula. The ore deposits is epithermal gold-silver vein emplaced in late Cretaceous andesite, andesitic pyroclastics and quartz porphyry. Ore is composed of pyrite, chalcopyrite, sphalerite, galena, electrum, argentian tetrahedrite, Cu-Ag-sulfides, quartz and rhodochrosite. Filling temperature of fluid inclusions in quartz ranges from 134 to $223^{\circ}C$ and salinity ranges from 1.2 to 3.8 weight % equivalent to NaCl.

  • PDF

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China (중국의 중석광상을 근거로한 중석광상 성인 총론)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

Silver Ores and Fluid Inclusions of the Cheolam Silver Deposits (철암은광상(鐵岩銀鑛床)의 광석(鑛石)과 유체포유물(流體包有物))

  • Park, Hee-In;Woo, Young-Kyun;Bae, Young Boo
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • The Cheolam silver deposits are emplaced along the fractures in breccia dike and the Hongjesa granite. Breccia dike contains fragments of late Cretaceous acidic volcanic rocks and other fragments of various rocks distributed in the mine area. Therefore it is presumed that the mineralization was taken place in later than late Cretaceous time. Mineral paragenesis is complicated by multiple episodes of fracturing. Six distinct depositional stages can be recognized: stage I, deposition of base metal sulfides; stage II, deposition of base metal sulfides and silver minerals; stage III, deposition of carbonates; stage IV, deposition of silver minerals and base metal sulfides; stage V, deposition of silver minerals; stage VI, deposition of barren quartz. Silver minerals from the deposits are native silver, acanthite, pyrargyrite, argentian tetrahedrite, stephanite, polybasite, pearceite, allargentum, antimonial silver and electrum. Fluid inclusion studies ware carried out for stage I, II, IV and VI quartz and stage III calcite. Homogenization temperatures for each stage are as follows: stage I, from $225^{\circ}$ to $360^{\circ}C$; stage II, from $145^{\circ}$ to $220^{\circ}C$; stage III, from $175^{\circ}$ to $240^{\circ}C$; stage IV, from $130^{\circ}$ to $185^{\circ}C$; stage VI, from $120^{\circ}$ to $145^{\circ}C$. Salinities of ore fluids were in the range of 4 and 10 wt.% equivalent NaCl over stage I and stage VI. Ore mineralogical data of each stage indicate that temperatures are within the range of homogenization temperature of fluid inclusions and sulfur fugacities declined steadily from $10^{-9.7}atm$. to $10^{-18.7}atm$. through stage I into stage V.

  • PDF