• Title/Summary/Keyword: Last Glacial Maximum

Search Result 68, Processing Time 0.032 seconds

Geoarchaeology of the Piseo-ri Paleolithic site, Muan (무안 피서리구석기유적의 지질.고고학적 특성)

  • Lee, Heon-Jong;Chung, Chull-Hwan;Park, Sung-Tan
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.13-21
    • /
    • 2010
  • The Piseo-ri site in Muan provides significant data in investigation on the Paleolithic sites in the southwest coast of Korea. Stratigraphic and geological analysis indicates that the characteristic of soil wedge can vary in accordance with soil property and relief of paleo-surface. Considering that the cultural layer was deposited after the Last Glacial Maximum, co-occurrence of the late Middle to early Upper Paleolithic stone tools suggests a possibility of redeposition of different ages resulted from active erosion. The result shows that the distribution of the Paleolithic tools and the property of soil wedge could be controlled by environmental conditions such as relief of paleo-surface and climate.

  • PDF

Arctic Climate Change for the Last Glacial Maximum Derived from PMIP2 Coupled Model Results (제2차 고기후 모델링 비교 프로그램 시뮬레이션 자료를 이용한 마지막 최대빙하기의 북극 기후변화 연구)

  • Kim, Seong-Joong;Woo, Eun-Jin
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.31-50
    • /
    • 2010
  • The Arctic climate change for the Last Glacial Maximum(LGM) occurred at 21,000 years ago (21ka) was investigated using simulation results of atmosphere-ocean coupled models from the second phase of the Paleoclimate Modelling Intercomparison Program(PMIP2). In the analysis, we used seven models, the NCAR CCSM of USA, ECHAM3-MPIOM of German Max-Planxk Institute, HadCM3M2 of UK Met Office, IPSL-CM4 of France Laplace Institute, CNRM-CM3 of France Meteorological Institute, MIROC3.2 of Japan CCSR at University of Tokyo, and FGOALS of China Institute of Atmospheric Physics. All the seven models reproduces the Arctic climate features found in the present climate at 0ka(pre-industrial time) in a reasonable degree in comparison to observations. During the LGM, the atmospheric $CO_2$ concentration and other greenhouse gases were reduced, the ice sheets were expanded over North America and northern Europe, the sea level was lowered by about 120m, and orbital parameters were slightly different. These boundary conditions were implemented to simulated LGM climate. With the implemented LGM conditions, the biggest temperature reduction by more than $24^{\circ}C$ is found over North America and northern Europe owing to ice albedo feedback and the change in lapse rate by high elevation. Besides, the expansion of ice sheets leads to the marked temperature reduction by more then $10^{\circ}C$ over the Arctic Ocean. The temperature reduction in northern winter is larger than in summer around the Arctic and the annual mean temperature is reduced by about $14^{\circ}C$. Compared to low mid-latitudes, the temperature reduction is much larger in high northern altitudes in the LGM. This results mirror the larger warming around the Artic in recent century. We could draw some information for the future under global warming from the knowledge of the LGM.

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea (북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미)

  • Yoon, Ho-Il;Kim, Yea-Dong;Yoo, Kyu-Cheul;Lee, Jae-Il;Nam, Seung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

Study of East Asia Climate Change for the Last Glacial Maximum Using Numerical Model (수치모델을 이용한 Last Glacial Maximum의 동아시아 기후변화 연구)

  • Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.51-66
    • /
    • 2006
  • The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.

  • PDF

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 2004
  • The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

Sequence Stratigraphy of Late Quaternary Deposits in the Southeastern Continental Shelf, Korea (한국 남동 대륙붕 후 제4기 퇴적층의 시퀀스 층서)

  • 유동근;이치원;최진용;박수철;최진혁
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.369-379
    • /
    • 2003
  • Analysis of high-resolution seismic profiles and sediment data from the southeastern continental shelf of Korea reveals that the late Quaternary deposits consist of a set of lowstand (LST), transgressive (TST), and highstand systems tracts (HST) that corresponds to the sea-level change after the Last Glacial Maximum. LST (Unit I) above the sequence boundary consists of sandy mud or muddy sand deposited during the last glacial period and is confined to the shelf margin and trough region. TST (Unit II) between transgressive surface and maximum flooding surface consists of sandy sediments deposited during the postglacial transgression (15,000-6,000 yr BP). Although TST is widely distributed on the shelf, it is much thinner than LST and HST. On the basis of distribution pattern, TST can be divided into three sub-units: early TST (Unit IIa) on the shelf margin, middle TST (Unit IIb) on the mid-shelf, and late TST (Unit IIc) on the inner shelf, respectively. These are characterized by a backstepping depositional arrangement. HST(Unit III) above the maximum flooding surface is composed of the fine-grained sediments deposited during the last 6000 yrs when sea level was close to the present level and its distribution is restricted to the inner shelf along the coast.

Paleovegetation and Paleoclimate Changes in Southeastern Part of the Korean Peninsula over the Last 30 kyr Inferred from Plant Wax Carbon Isotopes (장족형 탄화수소(n-alkane)의 탄소 안정동위원소비를 통한 과거 3만년 동안 한반도 남동해안의 고식생 및 고기후 복원)

  • Suh, Yeon Jee;Hyun, Sangmin
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.289-297
    • /
    • 2018
  • This study reconstructs past vegetation changes in southeastern Korea over the last 30 thousand years using plant waxes (i.e. long chain n-alkanes) and their carbon isotopic compositions (${\delta}^{13}C_{alk}$) preserved in marine sediment core (KIODP 12-1) retrieved from the East Sea. Here we show changes in vegetation composition in the Korean peninsula in relation to the strength of the East Asian Summer Monsoon. During the Last Glacial Maximum (LGM), when the summer monsoon weakened, precipitation decreased and $C_3$ grassland expanded. After the LGM, the summer monsoon gradually intensified, increasing rainfall, and thus expanding the forestland coverage. Precipitation climaxed from 10 to 6 kyr BP, which includes the Holocene Climate Optimum. The grassland began to expand since 5 kyr BP due to climate warming and drying towards the present. The ${\delta}^{13}C_{alk}$ values may also have been influenced by agricultural activities, which is known to have begun since the late Neolithic (ca. 7.0~3.0 kyr BP). Our results demonstrate how changes in the global climate state influence regional atmospheric circulation and precipitation distribution, and consequently terrestrial plant composition in southeastern Korea.

Late Quaternary Sedimentary Processes in the Northern Continental Margin of the South Shetland Islands, Antarctica (남극 남쉐틀랜드 군도 북부 대륙주변부의 후기 제 4기 퇴적작용)

  • 윤석훈;윤호일;강천윤
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Sedimentary facies and high-resolution echo facies were analyzed to elucidate sedimentation pattern of the late Quaternary glacial-marine deposits in the northern continental margin of the South Shetland Islands. Six sedimentary facies are classified, based on grain texture and sedimentary structures in gravity cores. The high-resolution (3.5 ㎑) echo characters are classified into 6 echo facies on the basis of clarity, continuity, and shape of bottom and subbottom echoes together with seafloor topography. Distribution of the echo and sedimentary facies suggest that there was a significant change in sedimentation pattern between the Last Glacial Maximum (LGM) and subsequent glacier-retreating period. When the grounded glaciers extended to the present shelfbreak during LGM, coarse-grained subglacial tills were widespread in the shelf area, and deep troughs in the shelf were carved beneath the fast-flowing ice steam. As the glacial margin retreated landward after LGM, dense meltwater plumes released from the retreating ice-front were funneled along the glacier-carved troughs, and accumulated channel- or cannyon-fill deposits in the shelf and the upper to mid slope. At that time, slope sediments seem to have been reworked by slope failures and unsteady contour currents, and further transported by fine-grained turbidity currents along the South Shetland Trench. After the glacial retreat, sediments in the shelf and slope areas have been mainly introduced by persistent (hemi) pelagic settling, and fine-grained turbidity currents frequently occur along the axis of the South Shetland Trench.

Sea Level Fluctuation in the Yellow Sea Basin (황해 분지의 해수면 변동)

  • PARK, YONG AHN;KHIM, BOO KEUN;ZHAO, SONGLING
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 1994
  • A series of radiocarbon dating from intertidal, subtidal, and inner continental shelf deposits investigated along the west coast of Korea as well as from its offshore sea floor (namely, the eastern Yellow Sea Basin) how (1) the Holocene sea level rise, i.e., the ecstatic sea-level history during the oxygen isotope stage 1, and (2) pre-Holocene sea-level fluctuations during the oxygen isotope stages 2 and 3. Marine geophysical investigations in the Yellow Sea reported a possible development of desert and loses deposits due to dieselization under the cold and dry climate during the Last Glacial Maximum. The Kanweoldo deposit overlain unconformably by the Holocene intertidal deposits, which is mainly exposed along the tidal channels and intertidal flats in the Cheonsu Bay, the west coast of Korea, shows the characteristic cryogenic structure (cryoturbation). Such cryoturbation structure of the Kanweoldo deposit appears to indicate the cold and dry climate under the ecstatic sea-level paleoshoreline standing before and after of the pre-Holocene interstitial period (about 30000 y BP is suggested and its shoreline curve is constructed.

  • PDF