• Title/Summary/Keyword: Laser-Interferometer

Search Result 366, Processing Time 0.026 seconds

40 Gbps All-Optical 3R Regeneration and Format Conversion with Related InP-Based Semiconductor Devices

  • Jeon, Min-Yong;Leem, Young-Ahn;Kim, Dong-Churl;Sim, Eun-Deok;Kim, Sung-Bock;Ko, Hyun-Sung;Yee, Dae-Su;Park, Kyung-Hyun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.633-640
    • /
    • 2007
  • We report an experimental demonstration of 40 Gbps all-optical 3R regeneration with all-optical clock recovery based on InP semiconductor devices. We also obtain alloptical non-return-to-zero to return-to-zero (NRZ-to-RZ) format conversion using the recovered clock signal at 10 Gbps and 40 Gbps. It leads to a good performance using a Mach-Zehnder interferometric wavelength converter and a self-pulsating laser diode (LD). The self-pulsating LD serves a recovered clock, which has an rms timing jitter as low as sub-picosecond. In the case of 3R regeneration of RZ data, we achieve a 1.0 dB power penalty at $10^{-9}$ BER after demultiplexing 40 Gbps to 10 Gbps with an eletroabsorption modulator. The regenerated 3R data shows stable error-free operation with no BER floor for all channels. The combination of these functional devices provides all-optical 3R regeneration with NRZ-to-RZ conversion.

  • PDF

Numerical reconstruction of Incoherent Holography using the triangular interferometer (삼각형 간섭계를 이용한 Incoherent 홀로그래피의 수치적 재생에 관한 연구)

  • Bae, You-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.388-390
    • /
    • 1994
  • We are familiar with the holography in these days. For making holography the coherent sources like LASER are used in many fields. But coherent holography has many problems. Coherent holography needs many instrument for practical use like 3-D TV case. In solving the problem we use the non-coherent source. Nowadays many methods like conoscopic holo graphy using anisotropic crystal, shadow casting and interferometric systems are suggested. In this paper we make the hologram using the triangular interferometric systems. [1],[2],[3],[4]. We explain the afocal and double-afocal system which consists of the triangular interferometric system. The holography made in one point and two point cases is imaged on CCD camera and we handle the image data digitally for the reconstruction efficiently. In reconstructing the hologram the Fraunhofer diffraction theory is used. We adopt the rectangular aperture for the convenience of calculation. In the future we must reconstruct the perfect 3-Dimensional object by optical method. For this, we have many problems like resolution problem. We must solve these problem for perfect reconstruction.

  • PDF

A Study on Reliability Verification of Resonance Frequency Detection of Vibration Object using Time-average ESPI (시간 평균 ESPI를 이용한 진동 물체의 공진 주파수 검출 신뢰도 검증에 대한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Lee Dong-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.930-933
    • /
    • 2005
  • Non-destructive inspection techniques using laser have been breading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics. computer and image processing The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method. amplitude fields for vibrating objects were obtained directly from the time-average interferometer recorded by the ESPI system.

  • PDF

Precision Length Metrology using the Optical Comb of Femtosecond Pulse Lasers (펨토초 레이저의 주파수 모드를 이용한 정밀 길이 측정)

  • Jin Jong-Han;Kim Young-Jin;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.216-219
    • /
    • 2005
  • In precision length measurements using optical interferometry based on homodyne or heterodyne principles, it is crucial to have frequency-stabilized monochromatic light sources. To the end, we investigate the possibility of utilizing the optical comb constituted by ultrashort femtosecond pulse lasers generated from a gain medium of titanium-doped aluminium oxide $(Ti:Al_2O_3)$. The optical comb is stabilized by locking to the caesium atomic clock, which allows all the modes of the comb to maintain an extremely high level of frequency stabilization to precision of one part in $10^{16}$. Then, high precision length measurements are realized by extracting a single or group of particularly wanted optical frequency components or by adopting a third-party light source locked to the comb. Required measurement system setup will be presented in detail along with experimental results.

  • PDF

Development of Ultra-precision Positioning Technology Using High-resolution Interpolation Algorithm (고체배 알고리즘을 이용한 초정밀 위치즉정기술 개발)

  • 이종혁;배준영;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.117-124
    • /
    • 2004
  • Recently, nano-methodology is increasingly important as the ruler for measuring nano-technology, and we applied the linear encoder to nano-methodology. The quadrature output in the linear encoder has an effect on increasing the resolution in some techniques. Already, various interpolation techniques based on the quadrature signal have applied to the precision servo system. In this paper, we propose a new interpolation algorithm for ultra-precision positioning in the low speed with simulation by MATLAB SIMULINK. This method modified previous methods and was properly designed for some given control system. To verify, we first fulfilled the encoder signal test to find main parameters fer the signal transformation, then we proved the proposed interpolation algorithm by experiments, which show that the result of the interpolation algorithm corresponds with the measurement of the laser interferometer in 100 nm unit approximately. In addition, we can get more precise measurement by more accurate and noise-free signal. So we need to compensate imperfections in the encoder signal. After that, we will apply this algorithm to nano positioning system.

Development of plane Motion Accuracy Measurement Unit of NC Lathe (NC 선반의 정면 운동정도 측정장치의 개발)

  • 김영석;한지희;정정표;윤원주;송인석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

Development of Gravitational Wave Detection Technology at KASI (한국천문연구원의 중력파 검출기술 개발)

  • Lee, Sungho;Kim, Chang-Hee;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol;Ra, Young-Sik;Gwak, Geunhee;Yoon, Youngdo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2021
  • For the first time in Korea, we are developing technology for gravitational wave (GW) detectors as a major R&D program. Our main research target is quantum noise reduction technology which can enhance the sensitivity of a GW detector beyond its limit by classical physics. Technology of generating squeezed vacuum state of light (SQZ) can suppress quantum noise (shot noise at higher frequencies and radiation pressure noise at lower frequencies) of laser interferometer type GW detectors. Squeezing technology has recently started being used for GW detectors and becoming necessary and key components. Our ultimate goal is to participate and make contribution to international collaborations for upgrade of existing GW detectors and construction of next generation GW detectors. This presentation will summarize our results in 2020 and plan for the upcoming years. Technical details will be presented in other family talks.

  • PDF

An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar

  • Han, Fei;Liu, Hengjia;Sun, Dongsong;Han, Yuli;Zhou, Anran;Zhang, Nannan;Chu, Jiaqi;Zheng, Jun;Jiang, Shan;Wang, Yuanzu
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.69-80
    • /
    • 2020
  • A Rayleigh Lidar used for wind detection works by transmitting laser pulses to the atmosphere and receiving backscattering signals from molecules. Because of the weak backscattering signals, a lidar usually uses a high sensitivity photomultiplier as detector and photon counting technology for signal collection. The capturing of returned extremely weak backscattering signals requires the lidar to work on dark background with a long time accumulation to get high signal-to-noise ratio (SNR). Because of the strong solar background during the day, the SNR of lidar during daytime is much lower than that during nighttime, the altitude and accuracy of detection are also restricted greatly. Therefore this article describes an ultra-narrow bandwidth filter (UNBF) that has been developed on 354.7 nm wavelength of laser. The UNBF is used for suppressing the strong solar background that degrades the performance of Rayleigh wind lidar during daytime. The optical structure of UNBF consists of an interference filter (IF), a low resolution Fabry-Perot interferometer (FPI) and a high resolution FPI. The parameters of each optical component of the UNBF are presented in this article. The transmission curve of the aligned UNBF is measured with a tunable laser. Contrasting the result of with-UNBF and with-IF shows that the solar background received by a Licel transient recorder decreases by 50~100 times and that the SNR with-UNBF was improved by 3 times in the altitude range (35 km to 40 km) compared to with-IF at 10:26 to 10:38 on August 29, 2018. By the SNR comparison at four different times of one day, the ratio-values are larger than 1 over the altitude range (25~50 km) in general, the results illustrate that the SNR with-UNBF is better than that with-IF for Rayleigh Lidar during daytime and they demonstrate the effective improvements of solar background restriction of UNBF.

Temperature Compensation of 8 Channel DWDM Multiplexer Using All Optical fiber Mach-Zehnder Structure (전광섬유형 8채널 DWDM용 광다중화기의 온도보상 특성)

  • Chang, Jin-Hyeon;Jung, Jin-Ho;Kim, Young-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.697-704
    • /
    • 2005
  • In this paper, Passive Temperature Compensation Technology is apply to 8-channel Optical multiplexer with 1000Hz channel spacing. The 8-channel multiplexer is fabricated by connecting three cascaded Mach Zehnder Interferometer(MZI) of optical fiber type, and each interferometer has the wavelength interval of 100GHz, 2000Hz and 4000Hz, respectively. Furthermore, to acquire uniform insertion loss, it is fabricated by using Wavelength Flatten Coupler(WFC) in which the variation of insertion loss is low. $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. In summary, The prototype composed by eight cascaded MZI has an insertion loss of 5.5 dB, the bandwidth of 0.8nm at 0.5 dB point, and channel crosstalk of 25 dB. Furthermore, the loss dependent on polarization is measured as 0.06dB. Consequently, the output wavelength is shifted within 0.05 m when the surrounding temperature varies until $60^{\circ}C$

Measurements of Inner Defects of the Plate using Dual-beam Shearography (Dual-Beam Shearography를 이용한 물체의 내부결함 측정)

  • Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • In this study, we have used newly developed dual-beam shearography which is based on laser speckle that includes various information about an object. Among the several shearing techniques, we used Michelson shearing interference technique which is the most powerful. Acrylate plate was used as a sample, which has inner defects and low thermal conductivity. Michelson shearing interferometer was used for obtaining speckle fringes. We also used phase shifting technique to get a phase map. Using single beam illumination, we could obtain mixture of deformation components of both in-plane and out-of-plane. In order to separate the two components, we have used dual-beam shearography technique. We have obtained a speckle pattern of both before and after deformation. Through LS filtering and unwrapping processes, we could find a position and a shape of the inner defects easily. Deformation of the acrylate plate due to thermal heating has occurred mainly in z-direction(out-of-plane) because it has low thermal conductivity. The acrylate plate was deformed only at the restricted area where the electrical heat applied.