• 제목/요약/키워드: Laser system

검색결과 3,624건 처리시간 0.037초

레이져를 이용한 진동측정장치 (The Measurement Systme of Vibration using Laser)

  • 진동희;전병철;조종두;김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.357-362
    • /
    • 1993
  • In this study low priced laser measurement system was made, so its reliability was investigated Intensity distribution of laser beam measured by devised system and FFT analyzer and their results were examined for proving reliability of devised system. Transmitted laser beam intensity on photodiode changed by eccentrically rotating of disk cam and motor speed. To get results, photodiode and devised amplifier were used for changing voltage. After that, response signal was calculated by signal analysis program. It was found that the vibration of disk cam could be measured by the intensity distribution of laser beam and the same tendency was obtained by FFT. Change of motor speed effected the distribution of laser beam,which was obtained by devised system. Also linear distribution was got by sensitive balancing switch on amplifier according to the transmission of laser beam on photodide.

  • PDF

레이저 패턴 기반의 모의사격 시스템 및 구현 (Laser Pattern Based Simulated Shooting System and Its Implementation)

  • 정현찬;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제21권10호
    • /
    • pp.1171-1181
    • /
    • 2018
  • Most simulated shooting systems are TDM based method and dot type laser has been used. The proposed laser pattern based simulated shooting system is a new approach. It can distinguish shooters by calculating the angle of bar shaped laser pattern by each shooter. Unlike the existing TDM method, it is possible to distinguish shooters and lanes by patterns so that there is no time division restriction like TDM method. It is also possible to recognize overlapped impact points of laser patterns launched by multiple shooters. After the laser pattern based simulated shooting system was implemented, general shot and overlapped shot were tested for each lane. Through experiments, we confirmed the possibility of continuous shooting. In addition, it is possible to separate the pattern by each lane, and 100% recognition result was obtained even if impact points overlapped.

산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발 (Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system)

  • 배성우;김동수;최경현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

갈바노미터 스캐너를 이용한 레이저 마킹 시스템 설계 제작에 관한 연구 (A study on the design of the laser marking system using galvanometer scanner)

  • 조태익;이건이
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.145-148
    • /
    • 1986
  • To perform the marking on metal with high speed and non-contact using the laser beam of high energy, laser marking system is designed and fabricated applying the galvanometer scanner capable of high speed-precise beam positioning controlled by microprocessor. Laser is a Q-switched Nd:YAG producing multi-mode, wavelength, 1060nm. Optical system is composed of beam expander, scanning mirror and flat field lens. Consequently, the laser marking is satisfactorily achieved regardless of kinds of metal.

  • PDF

레이저를 이용한 마킹 시스템 및 응용기술 (Introduction to Laser Marking System and Application)

  • 김형식
    • Journal of Welding and Joining
    • /
    • 제12권2호
    • /
    • pp.20-27
    • /
    • 1994
  • The laser marking system is widely used in many industrial manufacturing companies as an effective process, because it is versitile, clean, and fast to run. Minimal heat deformation and zero tool wear can be obtained using fast and non-contact process of laser marking. As an introductory level, the basic knowledges about laser marking system layout and its components are presented with diagrams. The effects, requirements, and application example of laser marking process are also described in this paper.

  • PDF

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성 (Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel)

  • 장윤상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF

Development of Laser Process and System for Stencil Manufacturing

  • Lee, Jae-Hoon;Jeong Suh;Shin, Dong-Sig;Kim, Jeon-O;Lee, Young-Moon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.23-29
    • /
    • 2003
  • Stencil is used normally as a mask for solder pasting on pad of a printed circuit board (PCB). The objective of this study is to develop a stencil cutting system and determine the optimal conditions to make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse duration on the cut edge quality were investigated. In order to analyze the cut surface characteristics (roughness, kerfwidth, dross) optical microscopy, SEM microscopy and roughness measurements were used. As a result, the optimal conditions of cutting process parameters were determined, and the practical feasibility of the proposed system was also examined by using a commercial Gerber file for PCB stencil manufacturing.

레이저 테일러드 블랭크 용접 품질 모니터링 시스템 개발 (Development of laser tailored blank weld quality monitoring system)

  • 박현성;이세헌
    • 한국레이저가공학회지
    • /
    • 제3권2호
    • /
    • pp.53-61
    • /
    • 2000
  • On the laser weld production line, a slight alteration of the welding condition produces many defects. The defects are monitored in real time, in order to prevent continuous occurrence of defects, reduce the loss of material, and guarantee good quality. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in CO$_2$ laser welding. For high speed CO$_2$ laser welding, laser tailored welded blanks for example, on-line weld quality monitoring system was developed by using fuzzy multi-feature pattern recognition. Weld qualities were classified optimal heat input, a little low heat input, low heat input, and focus misalignment, and final weld quality were classified good and bad.

  • PDF

자동 표고 측정 장치 개발에 관한 연구 (A Study on the Development of the Automatic Level Measurement System)

  • 김종안;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.756-760
    • /
    • 1997
  • In this research, the automatic level measurement system used in land leveling was developed. By using a laser transmitter and a receiver as measuring equipments, level was measured automatically. The driving part of this system was composed of stepping motor, timing belt and pulley. It drived the laser receiver to track laser beam generated form the laser transmitter. The level measuring experiments were performed about three level change shapes (step, random, sine). This system could measure step level change of which amplitude was 40mm in 0.5s, random level change within .+-. mm, maximum measurement error. In case of sine level change, experiment was executed with varying the spatial frequency of level change. As a result, this system was able to measure sine level change of which spatial frequency was 0.5m $^{-1}$ accurately.

  • PDF