• Title/Summary/Keyword: Laser surface texturing

Search Result 42, Processing Time 0.022 seconds

Effect of Post Surface Modifications on Tribological Properties of Electrodeposited Ni/Ni-SiC coatings

  • Gyawali, Gobinda;Joshi, Bhupendra;Tripathi, Khagendra;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.43-44
    • /
    • 2015
  • Electrodeposited Ni and Ni-SiC composite coatings were prepared on Cu substrates by using the Ni-Sulfamate electrolytic bath. Thus prepared samples were subjected for the two different types of post surface modification techniques; i.e. Laser Surface Texturing (LST) and Ultrasonic Nano Surface Modification (UNSM), respectively in order to investigate their effects on surface and interface related properties of the coatings. Hemispherical dimples, with 80 to 200 um dimple spacing, were created and examined on the surfaces of the materials studied. The results revealed that micro-surface texturing with 150 um dimple spacing considerably improved the coefficient of friction. Dimple spacing accuracy and incorporated second phase ceramic particles both contributed significantly to reduction in coefficient of friction. On the other hand, application of UNSM considerably modified the surface topography, led to increase the Vickers microhardness, and reduced the wear and coefficient of friction as compared to non UNSM treated Ni and Ni-SiC samples.

  • PDF

Study on friction characteristics according to lubrication condition of metal surface by laser dotted line pattern processing (레이저 점선 패턴가공된 금속표면의 윤활조건에 따른 마찰특성에 관한 연구)

  • Chung, Woo-Young;Kim, Sang-Ho;Han, Hyung-Wook;Min, Joon-Won;Jeung, Won-Yong;Rhee, Meung-Ho
    • Laser Solutions
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • A high speed laser texturing method that relies on laser scanner conditions, to form pattern shapes with micro-narrow surface detail such as dotted line features is demonstrated and analyzed. For example, this method may be used to piston ring and gear part for automotive. Data on friction characteristics of two laser patterns employed for STD61 steel will be shown. Comparison of pattern depths obtained by repetition overlapping process with laser scanner to the results on friction coefficient will be provide. It will be shown that friction characteristic in dotted line patterns can significantly depend upon interaction with the lubrication and laser pattern conditions. Laser pattern processing into a shallow depth provides only slight improvement in friction, while work into a deep shape indicates a significant improvement.

  • PDF

Study of LST Surface Modification effect on friction and wear at lubricating condition

  • Tripathi, Khagendra;Joshi, Bhupendra;Gyawali, Gobinda;Kim, Seung-Ho;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.182-183
    • /
    • 2014
  • Hemispherical dimples with diameter, ø=$60{\mu}m$ and depth, d= $30{\mu}m$ were created on the metal and ceramics surfaces using INYA 10 watt Laser of 1064 nm wavelength. This study reports the influence of dimple pitch on friction and wear behavior rather than dimple size, depth and density. LST was performed on the specimens with dimple pitch and density in the range of 80 to-$200{\mu}m$ and 44 to 7 %, respectively. Surface topography was analyzed by using roughness measurement, scanning electron microscopy (SEM), and optical microscopy. Friction and wear characteristics were analyzed on textured surfaces at lubricating environment to observe the effect of surface texturing on reduction of friction and wear. Reduction on coefficient of friction was achieved by more than 70% due to the dual behavior of dimples as wear (debris) traps and lubricant reservoirs. Wear reduced significantly for the textured surface as compared to the polished surface. Moreover, the friction coefficient of the textured specimens reduced with increasing load and speed which may be attributed to the transition of lubrication regime.

  • PDF

Analysis of the Effect of Micro-groove Patterns on Osseointegration using Pulsed Laser Processing (펄스 레이저 가공에 의한 마이크로 그루브 패턴이 골 세포 유착에 미치는 영향 분석)

  • Seok-Jae Ha;Si-Myung Sung;Hye-Jin Kim
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.30-36
    • /
    • 2024
  • As the demand for biomaterials and medical devices increases due to advancements in medical technology and the rising average lifespan of the population, the importance of surface treatment technology for biometallic materials used in orthopedic implants is highlighted. Achieving stable mechanical attachment between the implant and human bone, specifically bone cell adhesion, is crucial. Without proper adhesion, issues such as inflammation and reduced load-bearing capacity can occur, leading to the need for implant reimplantation. Therefore, this paper focuses on creating a micro-groove pattern using a pulsed nanosecond laser on the surface of a titanium alloy (Ti6Al4V), a biometallic material, to promote cell adhesion. To evaluate the effectiveness of the pattern in enhancing cell adhesion, MG-63 osteoblasts were cultured on the micro-groove patterned surface, and their adhesion and morphological changes were analyzed. This study confirms the potential of laser processing as a surface treatment method for biometallic materials.

Wear and friction properties of alumina-zriconia-fluoride composites by laser surface texturing (알루미나 지르코니아 플로라이드 복합체의 레이저 표면 텍스처링에 대한 마찰 마모 특성)

  • Jeong, Sang-Hun;Kim, Seong-Ho;Lee, Sol-Bin;Jo, Seong-Hun;Kim, Tae-Ho;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.298-298
    • /
    • 2014
  • 표면 텍스처링 기술은 서로 접촉되는 표면 형태에 발생하는 마찰을 줄이는 기술이다. 이 기술은 자동차와 같은 기계장치에서 마찰을 줄여 보다 좋은 에너지 효율을 얻을 수 있어 효과가 기대되는 기술이다. 본 연구는 고체윤활제($CaF_2$ or $BaF_2$)와 alumina, zriconia를 이용하여 자기 윤활 세라믹 복합체를 만들고 그 위에 표면 텍스처링 후, 윤활 상태에서의 마찰특성을 알아보았다.

  • PDF

Laser Surface Texturing Effects of APSed Self-lubricating Ceramic composite coatings (APS법으로 제작한 자기윤활세라믹복합코팅층의 레이저표면텍스쳐링 효과)

  • Lee, Sol-Bin;Kim, Seong-Ho;Jeong, Sang-Hun;Jo, Seong-Hun;Kim, Tae-Ho;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.299-299
    • /
    • 2014
  • 엔진블럭 사이를 왕복 운동하는 피스톤은 엔진블럭과의 마찰은 불가피한 상태일 수밖에 없으며 이렇게 된다면 엔진블럭 또는 피스톤의 파손, 변경이 있을 수밖에 없다. 피스톤에 대한 연구는 이러한 파손, 변경을 최소화시키기 위해서 내마모성, 내열성 그리고 내구성을 향상시키는데 목적을 두고 있다. 본 실험은 APS법으로 제작된 자기윤활복합코팅층을 준비해 레이저표면텍스처링을 넣어 마찰 실험을 하였다. 기지재로는 알루미나-지르코니아복합체를 사용하였고, 고체윤활제로는 $CaF_2$$BaF_2$을 사용하였다.

  • PDF

Hot Imprinted Hierarchical Micro/Nano Structures on Aluminum Alloy Surfaces (고온 임프린팅을 통한 알루미늄합금 표면의 마이크로/나노 구조 성형 기술)

  • Moon, I.Y.;Lee, H.W.;Oh, Y.S.;Kim, S.J.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.239-246
    • /
    • 2019
  • Various surface texturing techniques have been studied because of the effective applicability of micro or nano scale surface patterns. Particularly, the most promising types of patterns include the hierarchical patterns, which consists of micro/nano structures. Different processes such as MEMS, laser machining, micro cutting and micro grinding have been applied in the production of hierarchical patterns on various material surfaces. This study demonstrates the process of hot imprinting to induce the hierarchical patterns on the Al alloy surfaces. Wire electrical discharge machining (WEDM) process was used to imprint molds with micro scale sinusoidal pattern. In addition, the sinusoidal pattern with rough surface morphology was obtained as a result of the discharge craters. Consequently, the hierarchical patterns consisting of the sinusoidal pattern and the discharge craters were prepared on the imprinting mold surface. Hot imprinting process for the Al plates was conducted on the prepared mold, and the replication performance was analyzed. As a result, it was confirmed that the hierarchical patterns of the mold were effectively duplicated on the surface of Al plate.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.