• Title/Summary/Keyword: Laser speckle image

Search Result 36, Processing Time 0.026 seconds

Laser Speckle Imaging Using Laser Speckle Endoscope (레이저 스펙클 내시경을 이용한 미세혈관 영상화 기법)

  • Jin, Ho-Young;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.91-96
    • /
    • 2010
  • A laser speckle is a random pattern that has a granular appearance produced by reflected light when a coherent laser illuminates an irregular course surface. Laser speckle system has many advantages. It can detect some animals functional parts. Moreover, it relatively consists of simple and in-expensive system. It is very important that detecting micro-vessels through image processed image. Current study is to improve image quality through variable image processing method. But this paper made laser speckle endoscope for miniaturization and commercialization laser speckle system. We had endoscope test through goldfish's tail. We will compare the processed speckle image and halogen image.

Laser Speckle Imaging Using Adaptive Windowing Method (적응 윈도우 기법을 사용한 레이저 스펙클 영상의 처리)

  • Jin, Ho-Young;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • A laser speckle is a random pattern that has a granular appearance produced by reflected light when a coherent laser illuminates an irregular course surface. Most important property of laser speckle is detecting micro-vascular. Speckle image needs image processing to detect micro-vascular. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the spatial. Conventional fixed window based LASCA has shortcoming in that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, we newly introduce the concept of adaptive window method to conventional laser speckle image analysis. We have compared conventional LASCA and its variants with the proposed method in terms of image quality and processing complexity.

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

Evaluation of Displacement Measurement Technique Using Laser Speckle and Digital Image Correlation Method (레이저 스페클과 디지털 화상관련법을 이용한 변위 측정방법의 평가)

  • 강기주;이정현;전문창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2003
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG (Speckle Strain/Displacement Gage), ESP (Electronic Speckle Photography) and its 3-dimension version SDSP are evaluated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

Design and Fabrication of Optical Element for Speckle Reduction in Laser Projector (레이저 프로젝터의 스페클 저감을 위한 광학 소자 설계 및 제작)

  • Lee, Jae-Yong;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • Laser projector has many advantages of high brightness, high resolution and small size, but the huge drawback of image degradation called speckle which generated by coherence of laser and roughness of surface interrupts their general use. There are many methods to reduce speckle pattern, but they need effective optical systems to realize display to the far field with huge volume. We designed speckle reduction element by using microlens with controlled curvature to reduce spatial coherence. Vibration element was also applied to reduce temporal coherence which considered response time of eye. Designed element was fabricated by simple reflow method and imprinting method. From the results, the fabricated element performed 48.33% of speckle reduction efficiency and 41.29% of optical efficiency with a single doublet lens.

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (II) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (II))

  • 강영준;노경완;나의균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.113-119
    • /
    • 1998
  • Recently Electronic Speckle Pattern Interferometry(ESPI) has been studied because it has the advantages to be able to measure the whole-field surface deformations of engineering components and materials in industrial areas with noncontact. The speckle patterns to be formed with interference phenomena of scattering light from rough surfaces illuminated by laser light have phase informations of surface deformations. In this study we used this interference phenomena and the phase shifting method to measure the inplane deformations, together with the use of digital image equipment to process the informations contained in the speckle pattern and to display consequent interferograms on TV monitor. FEA was performed before experiments and we obtained good agreement between the experimental results and FEA.

  • PDF

Measurement of Deformation field in CT specimen using Laser speckle (레이저 스페클을 이용한 CT 시험편의 변형장 측정)

  • Jean, Moon-Chang;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.192-197
    • /
    • 2001
  • To obtain $A_2$ experimentally in the $J-A_2$ theory, deformation field on the lateral surface of a CT specimen was to be determined using Laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure $A_2$ continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and $A_2$ were explored.

  • PDF

A Study of Measurement of In-plane Displacement by CW Laser Speckle Photography and Image Processing (연속파 레이저 스페클 사진법(寫眞法)과 화상처리(畵像處理)에 의한 면내섭위(面內燮位) 측정(測定)에 관한 연구(硏究))

  • Kim, K.S.;Na, G.D.;Kim, T.H.;Chung, N.K.;Kim, C.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents experimental results which explore the capability of a CW laser speckle photography for tile measurement of in-plane displacement at high temperature. The serious restrictions on the application of the method seem to be the ambient air turbulence and the change of surface texture caused by the oxidation, as they tend to decorrelate the double exposured speckle patterns. In order to assess only the effect of air turbulence, a ceramics-coated stainless steel plate is heated in air and Ar-laser specklegrams are made with combination of temperature and lateral translation displacement. The slight reduction in visibility of Young's fringes is observed at $1000^{\circ}C$. The analyses of Young's fringes are carried out by a image processing system using a TV-camera and computers, and the result agrees well with the micrometer reading. Futhermore, uncoated stainless steel and Hastelloy X plates are tested and the effect of oxidation is also evaluated. The experimental results demonstrate that a CW laser speckle photography is applicable at temperatures up to $1000^{\circ}C$.

  • PDF

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.