• Title/Summary/Keyword: Laser speckle contrast imaging

Search Result 7, Processing Time 0.019 seconds

Enhancement of Speckle Contrast in vivo by Combining Linearly Polarized Laser Light and an Analyzer

  • Qureshi, Muhammad Mohsin;Mac, Khuong Duy;Kim, Andrew Hyunjin;Kim, Young Ro;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.351-361
    • /
    • 2021
  • Speckle imaging is capable of dynamic data acquisition at high spatiotemporal resolution, and has played a vital role in the functional study of biological specimens. The presence of various optical scatterers within the tissue causes alteration of speckle contrast. Thus structures like blood vessels can be delineated and quantified. Although laser speckle imaging is frequently used, an optimization process to ensure the maximum speckle contrast has not been available. In this respect, we here report an experimental procedure to optimize speckle contrast via applying different combinations of varying polarization of the illuminating laser light and multiple analyzer angles. Specifically, samples were illuminated by the p-polarization, 45°-polarization, and s-polarization of the incident laser, and speckle images were recorded without and with the analyzer rotated from 0° to 180° (Δ = 30°). Following the baseline imaging of a solid diffuser and a fixed brain sample, laser speckle contrast imaging (LSCI) was successfully performed to visualize in vivo mouse-brain blood flow. For oblique laser illumination, the maximum contrast achieved with p-polarized and s-polarized light was perpendicular to the analyzer's axis. This study demonstrates the optimization process for maximizing the speckle contrast, which can improve blood-flow estimation in vivo.

Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation

  • Cho, Ahra;Yeon, Chanmi;Kim, Donghyeon;Chung, Euiheon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.

Development of a Real-time Medical Imaging System Combined with Laser Speckle Contrast Imaging and Fluorescence Imaging (형광과 레이저 스펙클 대조도 이미징을 결합한 실시간 의료영상 시스템 개발)

  • Shim, Min Jae;Kim, Yikeun;Ko, Taek Yong;Choi, Jin Hyuk;Ahn, Yeh-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.116-124
    • /
    • 2021
  • It is important to differentiate between the target tissue (or organ) and the rest of the tissue before incision during surgery. And when it is necessary to preserve the differentiated tissues, the blood vessels connected to the tissue must be preserved together. Various non-invasive medical imaging methods have been developed for this purpose. We aimed to develop a medical imaging system that can simultaneously apply fluorescence imaging using indocyanine green (ICG) and laser speckle contrast imaging (LSCI) using laser speckle patterns. We designed to collect images directed to the two cameras on a co-axial optical path and to compensate equal optical path length for two optical designs. The light source used for fluorescence and LSCI the same 785 nm wavelength. This system outputs real-time images and is designed to intuitively distinguish target tissues or blood vessels. This system outputs LSCI images up to 37 fps through parallel processing. Fluorescence for ICG and blood flow in animal models were observed throughout the experiment.

Laser Speckle Imaging Using Laser Speckle Endoscope (레이저 스펙클 내시경을 이용한 미세혈관 영상화 기법)

  • Jin, Ho-Young;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.91-96
    • /
    • 2010
  • A laser speckle is a random pattern that has a granular appearance produced by reflected light when a coherent laser illuminates an irregular course surface. Laser speckle system has many advantages. It can detect some animals functional parts. Moreover, it relatively consists of simple and in-expensive system. It is very important that detecting micro-vessels through image processed image. Current study is to improve image quality through variable image processing method. But this paper made laser speckle endoscope for miniaturization and commercialization laser speckle system. We had endoscope test through goldfish's tail. We will compare the processed speckle image and halogen image.

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.

Laser Speckle Imaging Using Adaptive Windowing Method (적응 윈도우 기법을 사용한 레이저 스펙클 영상의 처리)

  • Jin, Ho-Young;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • A laser speckle is a random pattern that has a granular appearance produced by reflected light when a coherent laser illuminates an irregular course surface. Most important property of laser speckle is detecting micro-vascular. Speckle image needs image processing to detect micro-vascular. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the spatial. Conventional fixed window based LASCA has shortcoming in that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, we newly introduce the concept of adaptive window method to conventional laser speckle image analysis. We have compared conventional LASCA and its variants with the proposed method in terms of image quality and processing complexity.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.