• Title/Summary/Keyword: Laser range sensor

Search Result 215, Processing Time 0.023 seconds

Two-Dimensional Depth Data Measurement using an Active Omni-Directional Range Sensor (전방향 능동 거리 센서를 이용한 2차원 거리 측정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of then, and as a result, they may collide with objects moving from the side or behind. To overcome this problem, an active omni-directional range sensor system has been built that can obtain an omni-directional depth map through the use of a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system produces a laser conic plane by rotating the laser point source at high speed: this creates a two-dimensional depth map, in real time, once an image is captured. The results obtained from experiment show that the proposed sensor system is very efficient, and can be utilized for navigation of mobile robot in an unknown environment.

  • PDF

Active omni-directional range sensor for mobile robot navigation (이동 로봇의 자율주행을 위한 전방향 능동거리 센서)

  • 정인수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.824-827
    • /
    • 1996
  • Most autonomous mobile robots view things only in front of them. As a result, they may collide against objects moving from the side or behind. To overcome the problem we have built an Active Omni-directional Range Sensor that can obtain omnidirectional depth data by a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system makes a laser conic plane by rotating the laser point source at high speed and achieves two dimensional depth map, in real time, once an image capture. The experimental results show that the proposed sensor system provides the best potential for navigation of the mobile robot in uncertain environment.

  • PDF

Fusion of Sonar and Laser Sensor for Mobile Robot Environment Recognition

  • Kim, Kyung-Hoon;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.3-91
    • /
    • 2001
  • A sensor fusion scheme for mobile robot environment recognition that incorporates range data and contour data is proposed. Ultrasonic sensor provides coarse spatial description but guarantees open space with no obstacle within sonic cone with relatively high belief. Laser structured light system provides detailed contour description of environment but prone to light noise and is easily affected by surface reflectivity. Overall fusion process is composed of two stages: Noise elimination and belief updates. Dempster Shafer´s evidential reasoning is applied at each stage. Open space estimation from sonar range measurements brings elimination of noisy lines from laser sensor. Comparing actual sonar data to the simulated sonar data enables ...

  • PDF

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

Implementation of the Real-time Measurement System of Receiver Sensitivity for a Laser Range Finder (레이저 거리 측정기용 광 검출기 수신 감도 실시간 측정 시스템 구현)

  • Lee, Young-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.108-111
    • /
    • 2016
  • We propose the method for measuring sensitivity of optical receiver of a long-range laser range finder in real-time. The sensitivity of the detector can be calculated using the detected voltage of the reference sensor, the area of the reference sensor and the transmittance ratio of neutral density filters. To evaluate the performance of the proposed method, we implemented a system and performed experiments. As a result, this system can be measured from 2nW to $113{\mu}W$. With this system, we measured the sensitivity of 37nW and 7nW with PIN PD and APD sample, respectively. This system has the advantage for the performance test of an optical sensor module in the long-range laser range finder.

A Study on the Vision Sensor Using Scanning Beam for Welding Process Automation (용접자동화를 위한 주사빔을 이용한 시각센서에 관한 연구)

  • You, Won-Sang;Na, Suck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.891-900
    • /
    • 1996
  • The vision sensor which is based on the optical triangulation theory with the laser as an auxiliary light source can detect not only the seam position but the shape of seam. In this study, a vision sensor using the scanning laser beam was investigated. To design the vision sensor which considers the reflectivity of the sensing object and satisfies the desired resolution and measuring range, the equation of the focused laser beam which has a Gaussian irradiance profile was firstly formulated, Secondly, the image formaing sequence, and thirdly the relation between the displacement in the measuring surface and the displacement in the camera plane was formulated. Therefore, the focused beam diameter in the measuring range could be determined and the influence of the relative location between the laser and camera plane could be estimated. The measuring range and the resolution of the vision sensor which was based on the Scheimpflug's condition could also be calculated. From the results mentioned above a vision sensor was developed, and an adequate calibration technique was proposed. The image processing algorithm which and recognize the center of joint and its shape informaitons was investigated. Using the developed vision sensor and image processing algorithm, the shape informations was investigated. Using the developed vision sensor and image processing algorithm, the shape informations of the vee-, butt- and lap joint were extracted.

Simulation of Ladar Range Images based on Linear FM Signal Analysis (Linear FM 신호분석을 통한 Ladar Range 영상의 시뮬레이션)

  • Min, Seong-Hong;Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Ladar (Laser Detection And Ranging, Lidar) is a sensor to acquire precise distances to the surfaces of target region using laser signals, which can be suitably applied to ATD (Automatic Target Detection) for guided missiles or aerial vehicles recently. It provides a range image in which each measured distance is expressed as the brightness of the corresponding pixel. Since the precise 3D models can be generated from the Ladar range image, more robust identification and recognition of the targets can be possible. If we simulate the data of Ladar sensor, we can efficiently use this simulator to design and develop Ladar sensors and systems and to develop the data processing algorithm. The purposes of this study are thus to simulate the signals of a Ladar sensor based on linear frequency modulation and to create range images from the simulated Ladar signals. We first simulated the laser signals of a Ladar using FM chirp modulator and then computed the distances from the sensor to a target using the FFT process of the simulated signals. Finally, we created the range image using the distances set.

  • PDF

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

Laser sensor wavelength interrogation using a long-period fiber grating (장주기 격자를 이용한 광섬유 레이저센서의 파장변화 측정)

  • Song, Min-Ho;Lee, Sang-Bae;Choi, Sang-Sam;Nam, Hui;Lee, Byoung-Ho
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.83-88
    • /
    • 1997
  • We present a fiber laser sensor that uses a fiber grating as a strain sensor head and an end-reflector of the laser cavity. A passive wavelength. The long-period grating band-rejection filter showed a wide usable filter wavelength range of about 25 nm, and the intensity of transmitted light increased by 16% for 1nm sensor wavelength shift in trhe measurement range.

  • PDF