• Title/Summary/Keyword: Laser pulse energy

Search Result 306, Processing Time 0.022 seconds

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

New Technology for Creation of LTPS with Excimer Laser Annealing

  • Herbst, Ludolf;Simon, Frank;Rebhan, Ulrich;Osmanow, Rustem;Fechner, Burkhard
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.319-321
    • /
    • 2004
  • We report on progress in developing high-power excimer lasers as well as UV-optics for creating low-temperature poly silicon (LTPS). A new high-power excimer laser offers 315 Watts with high pulse to pulse energy stability. Larger substrates can now be processed in better quality with either the SLS process or the new optics for line beam excimer laser annealing.

  • PDF

Metal Drilling using Amplitude Modulated Laser Pulse (AM 변조된 레이저 펄스를 이용한 금속 Drilling)

  • Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1210-1212
    • /
    • 1994
  • An amplitude modulation technique for increasing the laser penetration efficiency for metals has been studied. By chopping electro-optically Nd:YAG laser pulse, the threshold energy for reliable hole drilling was decreased significantly and the penetration depth was increased. It was observed that the effect of chopping was optimal at 8-12 kHz with 60% duty cycle. It is believed that this improvement is due to an increase in the vapor recoil pressure and reduced plasma screening.

  • PDF

Effects of Process Parameters on Laser Ablation Based Machining and Measurements (레이저 어블레이션 기반 가공 및 계측에서 공정변수의 영향)

  • Jeong, Sung-Ho;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1359-1365
    • /
    • 2011
  • The changes of ablation characteristics with respect to laser parameters and material parameters during pulsed laser ablation of solids were discussed with experimental results. Although laser wavelength, laser pulse width, and laser pulse energy are the primary factors to be considered, it is shown that other parameters such as laser spot size and material properties also critically influence on the ablation results. It is further demonstrated that the microstructural characteristics of the target can lead to completely different ablation rate and surface morphology.

Micropatterning on Biodegradable Nanofiber Scaffolds by Femtosecond Laser Ablation Process (펨토초 레이저 절삭 공정을 이용한 생분해성 나노섬유 표면 미세 패터닝 공정)

  • Chung, Yongwoo;Jun, Indong;Kim, Yu-Chan;Seok, Hyun-Kwang;Chung, Seok;Jeon, Hojeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.555-559
    • /
    • 2016
  • A biodegradable nanofiber scaffolds using electrospining provide fibrous guidance cues for controlling cell fate that mimic the native extracellular matrix (ECM). It can create a pattern using conventional electrospining method, but has a difficulty to generate one or more pattern structures. Femtosecond(fs) laser ablation has much interested in patterning on biomaterials in order to distinguish the fundamental or systemic interaction between cell and material surface. The ablated materials with a short pulse duration using femtosecond laser that allows for precise removal of materials without transition of the inherent material properties. In this study, linear grooves and circular craters were fabricated on electrospun nanofiber scaffolds (poly-L-lactide(PLLA)) by femtosecond laser patterning processes. As parametric studies, pulse energy and beam spot size were varied to determine the effects of the laser pulse on groove size. We confirmed controlling pulse energy to $5{\mu}J-20{\mu}J$ and variation of lens maginfication of 2X, 5X, 10X, 20X created grooves of width to approximately $5{\mu}m-50{\mu}m$. Our results demonstrate that femtosecond laser processing is an effective means for flexibly structuring the surface of electrospun PLLA nanofibers.

Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy (펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.

Laser micromachining of micron-size aperture for electron beam microcolumn application using the piezo-switched Nd:YAG laser (Piezo Q-Switched Nd:YAG 레이저에 의한 초미니 전자빔 장치용 Micron-Size Aperture의 레이저 미세가공)

  • 안승준;김대욱;김호섭;최성수
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.456-460
    • /
    • 1999
  • Experimental studies of laser micromachining on Mo diaphragm using piezo Q-switched Nd:YAZ laser have been performed. Application of miniaturized micorcolumn electron gun arrays as a potential electron beam lithography or portable mini-scanning electron microscope (SEM) application have recently extensively examined. The conventional microcolumn fabrication technique would give a limitation on the minimization of aberration, In this paper, we obtained 20~30 $\mu \textrm m$aperture of laser micromachining on Mo diaphragm using piezo Q-swithed Nd:YAG laser. The geometrical figures, such as the diameter and the preciseness of the drilled aperture are dependent upon the total energy of the laser pulse train, laser pulse width, and the diameter of laser spot in addition to the materials-dependent parameters.

  • PDF

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

A Study on the Surfaces Modification of Tool Steel by YAG LASER (YAG LASER에 의한공구강의 표면개질에 관한 연구)

  • 강형식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.66-71
    • /
    • 2000
  • Laser induced surface hardening of Tool steel(STC5) can be achieved either with or without surface melting. In trans-formation hardening as the surface is heated to a temperature below its melting point and is rapidly cooled solidified microstructures are usually much finer and stronger than those of the base matals. For this reason surface modification of tool steel by YAG laser irradiation has been studied as a function of processing parameters such as power density pulse width defocusing distance and molten depth. The high energy density changes and refines the microstructure of the near surface layer. In the case of beam passes martensite formed in the melt zone exhibited very high vickers hardness values. Molten depth and width depend on defocusing distance and energy of black color painting is more absorptive than other color painting.

  • PDF

Output Characteristics of a Pulsed Ti:sapphire Laser Oscillator Pumped Longitudinally by Second Harmonic Wave of Nd:YAG Laser and a Ti:sapphire Laser Amplifier Operated along the Single Path of the Oscillator Beam (Nd:YAG 레이저의 제 2조화파로 종여기하는 펄스형 Ti:sapphire 레이저 발진기와 이를 이용한 단일경로 형태의 Ti:sapphire 증폭기의 출력특성)

  • Kim, Kyung-Nam;Jo, Jae-Heung;Lim, Gwon;Cha, Byung-Heon
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.66-73
    • /
    • 2007
  • The various output characteristics of a pulsed Ti:sapphire laser oscillator with a plane-parallel resonator, pumped longitudinally by the second harmonic wave of a Nd:YAG laser, and the output of a Ti:sapphire laser amplifier operated along the single path of the oscillator beam were investigated and analyzed. In the case of the oscillator, we measured the spectrum, the pulse buildup time, the temporal duration time of the pulse, and the output energy according to the variation of the pumping energy, resonator length, and the reflectance of the output coupler. And, in the case of the amplifier, we investigated and analyzed the output energy of the amplifier as a function of the time difference between the two pump beams of the oscillator and the amplifier, the pumping energy of the oscillator, and the pumping energy of the amplifier When pump energies of both the oscillator and the amplifier were 18 mJ/pulse, we could find that the output energy of the amplifier increased linearly and gradually up to the time difference of 35 ns. Finally, we determined that the slope efficiencies of the oscillator and the amplifier were 23.5 % and 11.6 %, respectively.