• Title/Summary/Keyword: Laser propagation

Search Result 199, Processing Time 0.095 seconds

Preliminary Study of the Measurement of Foreign Material in Galvanic Corrosion Using Laser Ultrasonic

  • Hong, Kyung Min;Kang, Young June;Park, Nak Kyu;Choi, In Young
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.323-327
    • /
    • 2013
  • A laser ultrasonic inspection system has the advantage of nondestructive testing. It is a non-contact mode using a laser interferometer to measure the vertical displacement of the surface of a material caused by the propagation of ultrasonic signals with the remote ultrasonic generated by laser. After raising the ultrasonic signal with a broadband frequency range using a pulsed laser beam, the laser beam is focused to a small point to measure the ultrasonic signal because it provides an excellent measurement resolution. In this paper, foreign materials are measured by a non-destructive and non-contact method using the laser ultrasonic inspection system. Mixed foreign material on the corroded part is assumed and the laser ultrasonic experiment is conducted. An ultrasonic wave is generated by pulse laser from the back of the specimen and an ultrasonic signal is acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer (CFPI). The characteristic of the ultrasonic signal of existing foreign material is analyzed and the location and size of foreign material is measured.

Influence of Semiconductor VCO Laser Frequency Response on Optical Phase-Locked Loop Performance (반도체 VCO Laser의 주파수 응답 특성이 Optical Phase-Locked Loop 성능에 미치는 영향)

  • O, Se-Eun;Choi, Woo-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.71-78
    • /
    • 1999
  • In this paper, a new model for optical phase-locked loop(OPLL) is proposed that includes VCO laser frequency response as well as loop propagation delay. It is found that both of them greatly affect the OPLL performance. Our model can be used for realizing high-performance microwave-range OPLL.

  • PDF

Effects of surface hardening by using $CO_2$ laser defocussed beam on the fatigue resistance of ductile irons ($CO_2$ 레이저 분산빔에 의한 표면경화가 구상흑연주철의 피로특성에 미치는 영향)

  • 박근웅;한유희;이상윤
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This study has been performed to investigate into some effects of the output power and traverse speed of laser beam on the microstructures, hardness and fatigue resistance of the ductile iron surface-hardened by $CO_2$ laser defocussed beam. Optical micrographs have shown that with increasing the output power and decreasing the traverse speed, the martensite was coarsened and some retained austenite were appeared in ductile iron. The microstructures of hardening zone were composed of bull's eye and some nodular graphite dissolved structures by the effect of self quenching. Fatigue fracture characteristics of ductile iron have appeared in the high stress and low stress ranges. The fracture initiated at nodular graphites in the surface hardened layer due to the stress concentration caused by a notch effect. The interior graphite nodules were broken away or popped out during crack propagation. Fatigue test has shown that values of fatigue strength considerably increased with increasing output power at a given traverse speed.

  • PDF

The Variation of Radiation Transmittance by the cw 1.07 ㎛ Fiber Laser and Water Aerosol Interaction

  • Koh, Hae Seog;Shin, Wan Soon;Jeon, Min Yong;Park, Byung Suh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2012
  • Among the atmospheric effect of laser propagation, the variations of the radiation transmittance by water aerosol evaporation have quantitatively been investigated. When the aerosol was exposed by a 1.07 ${\mu}m$ cw fiber laser, the increased amount of the transmittance variation was a maximum of 19.1% and the volume concentration variation of aerosol was observed as an increasing of laser intensity. Also, significant irregularity of refractive index was not found in the heated area during the continuous laser heating.

Thermal Lens Compensation in a Fiber-Coupled Laser-Diode Pumped Ceramic Nd:YAG Laser (광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저에서 열렌즈 효과의 보상)

  • Kim, Duck-Lae;Kim, Yeong-Sik;Kim, Byung-Tai
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.208-215
    • /
    • 2007
  • A fiber-coupled laser-diode pumped ceramic Nd:YAG laser for compensating the thermal tensing effect was developed. The thermal tensing effect was compensated using a convex lens, which was 25 mm away from the laser rod, with a focal length of 30 mm and an effective clear aperture of 22 mm. Without a compensator, the laser output power decreased suddenly above a pump power of 6 W. Using a compensator, the laser output power increased linearly according to the pump power. The beam propagation factor $M^{2}$ was 2.4 under a pump power of 12 W.

The Fatigue Behavior of Tailored Welded Blank Sheet Metal by Laser Beam (레이저를 이용한 Tailored Blank 용접 판재의 피로거동)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-55
    • /
    • 2000
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimens was joined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm) .As a base test, mechanical properties around weld zone were examined . The results indicated that there were no significant decreases in mechanical properties , but hardness around weld bead was 2.3 times greater than base material . The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimens and base metal was different, and it was increased by 25% when pres-strain was applied. The crack propagation rate was noticeably decreased around weld line and rapidly increased as it passed through weld line. Reviewing the shape of the crack propagation , crack width around weld line was around the weld zone due to retardation of crack growth , but is became narrow passing weld line due to decreased toughness.

  • PDF

The Fatigue Behavior of Laser Welded Sheet Metal (레이저 용접 판재의 피로거동)

  • 오택열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.339-344
    • /
    • 1999
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimen and base material was different, and it is increased by 25% when pre-strain was applied. The crack propagation rate was noticeable decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness.

  • PDF

Visualization of Elastic Waves Propagating on a Solid Surface with Fatigue Cracks by Laser Ultrasonic Technology

  • Imade, Masaaki;Miyauchi, Hidekazu;Okada, Saburo;Yamamoto, Shigeyuki;Takatsubo, Jyunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.4-109
    • /
    • 2001
  • We have developed a laser ultrasonic system for visualization of elastic waves propagating on a solid surface, in order to visualize ultrasonic waves propagating on opaque media. This system can produce a series of successive images as an animation of wave propagation, because of scanning an optical heterodyne probe to measure surface transient displacements. Using this visualization technique, we observed the scattering and diffraction of ultrasonic waves around various shapes of artificial defects, and examined its application to nondestructive inspection. This imaging system provides various kinds of visualization images such as propagation image, amplitude image, arrival time image and velocity image. We have been confident that this technique is available for nondestructive inspection and materials ...

  • PDF

A Study on the Characteristics of Elastic Wave Propagation in Plates Using Double Pulsed Laser Holographic Interferometry (이중펄스레이저 홀로그래픽 간섭법을 이용한 평판의 탄성파 전파특성에 관한 연구)

  • Lee, Ki-Baik;Na, Jong-Moon;Kim, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3211-3223
    • /
    • 1996
  • In this paper, the propagation of elastic wave generated by loading impact to plates made of isotropic of anisotropic material was studied. And the influence of boundary conditions (free or clamped edge) upon the reflection of elastic wave was anlyzed. Also, double exposure holographic interferometer using ruby pulse laser was formed in order to investigate transient waves. Before the elasitc wave was reflected from the edges, the elastic wave of isotropic plate such as aluminum plate showed circular interferometric fringe pattern, whereas that of anisotropic plate such as epoxy composite laminates showed elliptical one. And the transverse displacement curves obtained from experiment and theory for both plates agreed well. Also, the waves reflected from the boundary edges showed much differences according to the boundary condition of edges.

Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code

  • MIZUTA AKIRA;YAMADA SHOICHI;TAKABE HIDEAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.329-331
    • /
    • 2001
  • We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc $\~$ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.

  • PDF