• 제목/요약/키워드: Laser output

Search Result 777, Processing Time 0.029 seconds

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

The optical CT output signal characteristic according to temperature change (온도변화에 따른 광CT의 출력 특성)

  • Son, Hyun-Mok;Ahn, Mi-Kyoung;Heo, Soon-Young;Jeon, Jea-Il;Park, Won-Zoo;Lee, Kwang-Sik;Kim, Jung-Bae;Kim, Min-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, we took the basic experiment in order to explore the characteristics of optical CT(optical current transformer) for measuring high current in a superhigh voltage condition using faraday effect and wrote that. We used the 1,310[nm] Laser Diode for the source of light and PIN-Photodiode for receiver. The transmission line of light was composed of the single-mode fiber of 30[m] which could maintain the state of polarization in the optical fiber. The range of current was from 400[A] to 1300[A]. In addition, the temperature ranged from $20[^{\circ}C}]\;to\;50[^{\circ}C]$. In a same experiment condition, a power magnitude increases in proportion as input current is increasing and temperature become low. The maximum ratio of error in temperature of $50[^{\circ}C]$ appears 0.15[%] and the 0.16[%], 1.24[%] and 0.07[%] is ratio of error in respectively $40[^{\circ}C],\;30[^{\circ}C],\;and\;20[^{\circ}C]$.

  • PDF

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere (표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망)

  • PARK, MI-KYUNG;PARK, SUNYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.32-48
    • /
    • 2018
  • The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.

Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method (전달 행렬 방법을 이용한 850 nm수직 공진기 레이저 구조의 최적설계)

  • Kim Tae-Yong;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In comparison with edge-emitting lasers(EELs), predicting the output power and slope efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the absorption loss in DBR layers. However, by using transfer matrix method(TMM), we've made possible to calculate such parameters of multi-layer structures like VCSELs. In this paper, we've calculated the threshold gain, threshold current and slope efficiency through the methodology based on TMM. Also TMM is the way of customizing the VCSEL structure for the desired threshold current and slope efficiency by changing the number of DBR mirror layers.

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF

A Study of Board the Train Designed for Wheelchair Users on Welding Condition (휠체어 사용자를 위한 열차 탑승 장치 설계와 용접 조건)

  • Lee, Chul Ku;Kim, Incheol;Lee, Wooram
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2013
  • The ratio of mobility handicapped was 12,110,000 in late 2009 about 24.4% of total population. The number of handicapped population is increasing continuously due to traffic accidents and industrial disasters. Therefore, the purpose of this research is to suggest a design for passengers on wheelchairs to get into and off to raise handicapped or elderly people's right of mobility. The scope of this research is mobility handicapped especially wheelchair passengers who use vans, small buses, and trains. The ramp design of vans is module form. The ramp is moved with screw jack and guides are installed on each side to increase stability. Moreover, a bridge was installed for smooth getting in and off of the van. The ramp design for small bus is lowed by 200m in order not to have obstacle such as speed bump when getting in or off. In order to reduce vulnerable environment and administration, air slide cylinder was chosen. Lastly, for the ramp design of train, the principle of link was used that the simpler structure made the weight lighter and installation in the train became easier. If we look at the conjugation condition of heterogeneous materials to produce a ramp, proper welding condition for cold steel plate and stainless plate is 3kW output and 3-5m/min of welding speed using laser beam seems proper.

Development and Application of a Miniature Stereo-PIV System (Miniature Stereo-PIV 시스템의 개발과 응용)

  • Kim, K.C.;Chetelat, Olivier;Kim, S.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1637-1644
    • /
    • 2003
  • Stereoscopic particle image velocimetry is a measurement technique to acquire three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced from out-of$.$plane velocity components using a stereoscopic matching method. Most industrial fluid flows are three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Miniature Stereo-PIV(MSPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some primitive experimental results of the Miniature Stereo-PIV system. The Miniature Stereo-PIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Miniature Stereo-PIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

A Comparison of Signal Processing Techniques in Optical Current Sensor for GIS

  • Kim, Young-Min;Park, Jung-Hwan;Jee, Seung-Wook;Lee, Kwang-Sik;Kim, Jung-Bae;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.103-109
    • /
    • 2006
  • This research is contents about output characteristic of optic current sensor that use faraday effect. optic current sensor used in an experiment is consisted of three parts.(1) Source of light used laser diode of 1310[nm].(2) Sensor section manufactured circularly according to gas insulated switchgear. And $9/125[{\mu}m]$ standard single mode optical fiber for communication was installed winding 20 [turn] on sensor section core surroundings of diameter 31 [cm].(3) Electrical signal of PD(Photo detector) is collected using NI company's 16bit DAQ board via terminal block. Collected data analyzed by different three signal processing methods. NI company's $Labview^{TM}$ was used to signal processing software. As a result, In signal processing of optic current sensor, we could know that noise greatly more influences the error generation than fluctuation of light intensity. also, 1 class CT(current transformer) manufacture that have error rate less than 1[%] was available by removing these

Analysis of Optical Interconnection Systems Using SPICE (SPICE를 이용한 광연결 시스템의 성능 분석)

  • Lee, Seung-U;Choe, Eun-Chang;Choe, U-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.38-45
    • /
    • 2000
  • In this paper, an approach of modeling the optical interconnection system by SPICE simulation is presented. SPICE simulations with equivalent circuit models for optical devices are performed in a stable manner. From the simulated results, eye diagrams for receiver output and BER are obtained. Timing jitter due to laser diode turn-on delay effects can be found under various bias conditions. Using this approach, various system parameters such as bit rate, BER, dissipated transmitter power, and bias conditions can be optimized. It is expected that this approach will find useful applications such as Gigabit Ethernet and ATM.

  • PDF