• 제목/요약/키워드: Laser micro sintering

검색결과 15건 처리시간 0.031초

오피스용 및 산업용 디지털 3차원 실물복제기 요소기술 개발에 관한 연구

  • 김동수;이원희;김성종;이택민;김광영;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.303-303
    • /
    • 2004
  • 3차원 실물복제기(RODS)는 3차원 스캐닝, SFFS 및 네트워크 등의 복합기능이 내장된 장치로서 제품개발 및 사무자동화등 다양한 분야에 적용 가능한 장비이다. 또한, 기존의 각각 독립된 시스템인 3D스캐너와 SFFS를 하나의 시스템으로 구성함으로서 제작시간과 업무 효율을 높일 수 있는 차세대 시스템의 일종이다. 실물복제기는 산업용과 오피스용으로 구분되어 질 수 있으며, 본 연구에서 개발하고자 하는 다종 재료용 하이브리드형 SFFS는 다품종 소량생산 환경에 적합한 제품의 제작 방식으로서 기능성 부품을 직접 제작/검증 할 수 있다.(중략)

  • PDF

MEMS 공정을 이용하지 않는 미세구조물 제작에 관한 연구 (A Study on fabrication of micro structure not using MEMS processing)

  • 유홍진;김동학;장석원;김태완
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.267-269
    • /
    • 2004
  • 본 연구에서는 일반적인 미세구조물 제작공정인 lithography 공정을 이용하지 않고 SLS(Selective Laser sintering)형 RP(Rapid Prototyping system)을 이용하여 패턴의 깊이가 400$\mu$m인 미세구조물을 제작하였다. 제작 공정변수 중 재료의 상태가 new powder 이고 배치각이 $0^{\circ}$ 일 때 패턴의 깊이, 선폭과 표면조도가 가장 잘 구현되었다.

  • PDF

마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발 (Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter)

  • 이동근;박석주;박영옥;류정인
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성 (Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing)

  • 정현우;박성준;우수헌
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.