• Title/Summary/Keyword: Laser materials processing

Search Result 400, Processing Time 0.03 seconds

Welding characteristics of Metal bellows using a pulsed Nd:YAG laser (펄스 레이저를 이용한 벨로우즈 용접특성에 관한연구)

  • Kim, Jeng-O;Lee, Jae-Hoon;Suh, Jeong;Lee, Seung-Woo
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.10-14
    • /
    • 2012
  • Pulse laser welding was performed on C22 metal bellows. The results can be summarized as follows: Laser welded metal bellows had less thermal distortion, narrow HAZ, high aspect ratio in comparison with other welding processes like TIG, Plasma welding. Laser welded bellows has higher tensile strengths than that C22 base metal. The value of hardness in laser weld metal was measured 100-120 Hv, it was decreased compared to the base metal. It is reasoned that due to the annealed by heat input during the laser welding.

  • PDF

Patterning of ITO on Touch Screen Panels using a beam shaped femtosecond laser (빔 쉐이핑된 펨토초 레이저를 이용한 터치스크린 패널의 ITO 박막 패터닝)

  • Kim, Myung-Ju;Kim, Yong-Hyun;Yoon, Ji-Wook;Choi, Won-Seok;Cho, Sung-Hak;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Femtosecond laser patterning of ITO on a touch screen panel with a shaped fs laser beam was investigated. A quasi flat-top beam was formed using a variable mask and a planoconvex lens. The spatial profile of the original Gaussian beam and the shaped beam were monitored by a CCD beam profiler. The laser patterned ITO film was examined using an optical microscope, Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and Atomic Force Microscope (AFM). It turned out that the quality of the ITO pattern fabricated by a shaped beam is superior to that of the pattern without beam shaping in terms of debris generation, height of the craters, and homogeneity of the bottom. Optimum processing window was determined at the laser irradiance exhibiting 100% removal of Sn. The removal rate of In was measured to be 83%.

  • PDF

Angle Calculation Rotation Angle of One-axis Manipulator in Laser Module (레이저모듈에서의 1-축 틸팅의 회전각 계산)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun;Kim, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.506-509
    • /
    • 2012
  • Laser assisted machining is the processing method that preheating brittle materials by laser heat source and cutting the soften area. This processing applied to various industries because it can be cutting difficult-to-cut materials. However, the laser assisted machining appeared the limitations of processing for equipped with the spindle. So, it assumed separate model that spindle and laser assisted machining. In feed, the calculation of changing the angle of the laser module according to preheat point and the shape of the feed is important and it tried easy calculating changing angle of 1-axis Manipulator in separate model. In 3 types feed shape, angle of 1-axis Manipulator was calculated when fixed and moved in the outside of spindle. In this study, suggest 2 types of methods for laser module when fixed and moved.

Micromachining of Fused Silica by KrF Excimer Laser Induced Wet Etching (KrF 엑시머 레이저를 이용한 용융실리카의 미세 습식 식각가공)

  • 백병선;이종길;전병희;김헌영
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.601-607
    • /
    • 2002
  • Optically transparent materials such as fused silica, quartz and crystal have become important in the filed of optics and optoelectronics. Laser ablation continues to grow as an important technique for micromachining and surface modification of various materials, because many problems caused by direct contact between tools and workpiece can be avoided. Especially, laser ablation with excimer lasers enables fine micromachining of transparent materials such as fused silica, quartz and crystal, etc. In this study, laser-induced wet etching of fused silica in organic solution was conducted. KrF excimer laser was used as a light source and acetone solution of pyrene was used as etchant. Changing the number of laser pulses, micro holes of various depths are fabricated.

The excimer laser ablation of PET for nickel electroforming (니켈 전주도금을 위한 PET의 엑시머 레이저 어블레이션)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation by excimer laser radiation could be used successfully to make 3-D microstructure of PET. The mechanism for ablative decomposition of PET with KrF excimer laser(λ: 248nm, pulse duration: 5ns) was explained by photochemical process. And this process showed PET to be adopted in polymer master for nickel mold insert. Nickel electroforming by using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

  • PDF

Fabrication of a UV laser micromachining platform with process-monitoring optical modules (공정 모니터링 광학모듈이 장착된 UV 레이저 미세가공 플랫폼 제작)

  • Sohn, H.;Lee, J.H.;Jeong, Y.W.;Kim, S.I.;Hahn, J.W.
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • Laser micromachining has increasingly been adopted in various advanced industries where the high-precision machining of large-area, high-density and multi-layered components is in a strong demand. To effectively meet the requirements, the laser micromachining process must be carefully monitored. In order to facilitate the development of a new laser micromachining process and/or a new system, we have fabricated a UV laser micromachining platform that is equipped with optical modules for monitoring the process online. They include a laser power stabilizing module, a module for laser-induced breakdown spectroscopy, and an auto-focusing module.

  • PDF

Effect of Process Parameters on Surface Roughness and Porosity of Direct Laser Melted Bead (DLM 공정시 공정변수에 따른 내부공극률과 표면조도 변화)

  • Kim, T.H.;Jang, J.H.;Jeon, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.575-580
    • /
    • 2011
  • Direct laser melting(DLM) is promising as a joining method for producing parts for automobiles, aerospace, marine and medical applications. An advantageous characteristic of DLM is that it affects the parent metal very little. The mechanical properties of parts made by DLM are strongly affected by the porosity and surface roughness of the laser melted beads. This is a systematic study of the effects of the porosity and surface roughness of laser melted beads using various processing parameters, such as laser power, scan rate and overlapping ratio of the fill spacing. The specimens were fabricated with 316L and 304L austenitic stainless steel powder. Dense parts with low porosity were obtained at low laser scan speed, as it increased the aspect ratio of the parental material and the depth of penetration. The variations of surface roughness were examined at various processing parameters such as overlapping ratio and laser power.

Fabrication of waveguide using UV Ar-ion laser direct writing (Laser Direct Writing 방법을 이용한 광도파로 제작)

  • Kang H. S.;Suh J.;Lee J. H.;Kim J. O.
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The laser direct writing method using a UV Argon-ion laser is studied for fabrication of waveguide. The laser direct writing system is constructed with a vision camera, a xy-stage, a motion controller and the delivery components of a laser beam. The UV Argon-ion laser has wavelength range of $333.6\~363.8$ nm. A photo-active UV curable polymer for a planar light-wave circuit(PLC) of single mode is used. This polymer is irradiated by Argon-ion laser and developed by a solvent after a post-baking. The optimum laser direct writing condition is obtained experimentally by changing various process parameters such as laser power, writing speed and focal length. The propagation and coupling loss of a optical waveguide was measured as 1dB/cm and 0.6dB/cm, respectively. Also, the minimum width of waveguide of $100{\mu}m$(ZPLW-207) is obtained. Finally, the waveguides of line, bend and branch type are successfully fabricated.

  • PDF

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

Internal modification in transparent materials using plasma formation induced by a femtosecond laser

  • Park, Jung-Kyu;Yoon, Ji-Wook;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The fabrication of internal diffraction gratings with photoinduced refractive index modification in transparent materials was demonstrated using low-density plasma formation excited by a femtosecond (130 fs) Ti: sapphire laser (${\lambda}_p$=800 nm). The refractive index modifications with diameters ranging from $1{\mu}m$ to $3{\mu}m$ were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than $2.0{\times}10^{13}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.

  • PDF