• Title/Summary/Keyword: Laser induced fluorescence

Search Result 248, Processing Time 0.027 seconds

Measurement of OH radical spectrum in counterflow burner using degenerate four wave mixing (DFWM(degenerate four wave mixing)을 이용한 대향류버너 화염내의 OH 라디칼 스펙트럼 측정)

  • 이은성;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 1996
  • In non-saturation region, we measured the degenerate four wave mixing spectra of $X^2\;{\Pi}(v=0){\to}A^2{\Sigma}^+(v'=0)$ transition for OH in counterflow burner, which exists transiently in combustion reaction. We used forward box type geometry for phase matching. Calculating the population of each rotational level from the line intensities of R$_1$band and comparing it with Boltzmann distributions, we could obtain the temperatures of the flame at several points. Corrected for the absorption of incident laser fields, the final temperatures coincided with those measured by coherent anti-Stokes Raman Scattering within error $\pm$60 K near 2000 K. We also measured the concentration distribution of OH radical and it was compared to that measured by laser induced fluorescence.

  • PDF

Fast High-throughput Screening of the H1N1 Virus by Parallel Detection with Multi-channel Microchip Electrophoresis

  • Zhang, Peng;Park, Guenyoung;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1082-1086
    • /
    • 2014
  • A multi-channel microchip electrophoresis (MCME) method with parallel laser-induced fluorescence (LIF) detection was developed for rapid screening of H1N1 virus. The hemagglutinin (HA) and nucleocapsid protein (NP) gene of H1N1 virus were amplified using polymerase chain reaction (PCR). The amplified PCR products of the H1N1 virus DNA (HA, 116 bp and NP, 195 bp) were simultaneously detected within 25 s in three parallel channels using an expanded laser beam and a charge-coupled device camera. The parallel separations were demonstrated using a sieving gel matrix of 0.3% poly(ethylene oxide) ($M_r$ = 8,000,000) in $1{\times}$ TBE buffer (pH 8.4) with a programmed step electric field strength (PSEFS). The method was ~20 times faster than conventional slab gel electrophoresis, without any loss of resolving power or reproducibility. The proposed MCME/PSEFS assay technique provides a simple and accurate method for fast high-throughput screening of infectious virus DNA molecules under 400 bp.

Laboratory-scale fluorescence spectroscopic method using UV for monitoring soils contaminated with petroleum produce (자외선 형광 분석법을 이용한 유류 토양오염 모니터링 시스템의 현장 적용을 위한 기초 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.48-58
    • /
    • 2002
  • As a pilot experiment for developing the monitoring system for oil spill from storage tank, previous approach of monitoring contaminated oil from mixed soil sample had the limitation that it cannot reflect the real situations of the contamination. In this study, more realistic contamination condition and water contents were considered. Fluorescence intensity was not affected by water contents. To acquire the stability of media, sand, Ca-bentonite, alumina, Fe-oxide, bead and silica were tested. Only sand was suitable to our system. These results should provide basic information for constructing reliable monitoring system.

Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry (벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

Simultaneous Measurements of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV동시계측에 의한 난류예혼합화염의 관찰)

  • Choi, Gyung-Min;Tanahashi, Mamoru;Miyauchi, Toshio
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.91-96
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry (PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Reynolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Reynolds number turbulent premixed flame. The Reynolds number dependence of the flame front was clearly captured by the simultaneous CH-OH PLIF and stereoscopic PIV measurements.

  • PDF

Stability Enhancement by the Interaction of Diffusion Flames (다수 비예혼합 화염의 안정화 특성)

  • Kim, Jin-Sun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1420-1426
    • /
    • 2003
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes and kind of fuels. Four nozzle arrangements - cross 5, matrix 8, matrix 9 and circle 8 nozzles - are used in the experiment. There are many parameters affecting flame stability in multi-nozzle flames such as nozzle separation distance, fuel flowrates and nozzle configuration etc. Key factors to enhance blowout limit are the nozzle configuration and the existence of center nozzle. Even nozzle exit velocity equal 204 m/s, flame is not extinguished when there is not a center nozzle and s/d=15.3∼27.6 in matrix-8 and circular-8 configurations. At these conditions, recirculation of burnt gas is related with stability augmentation. Fuel mole fraction measurements using laser induced fluorescence reveal lifted flame base is not located at the stoichiometric contour.

Strain Rates and OH Layer Characteristics in Stabilization Region for Turbulent Non-premixed Jet Flames Close to Blowoff (동축공기 난류제트확산화염의 화염날림 근처에서의 변형률 및 OH 특성)

  • Hwang, Jeongjae;Kim, Taesung;Yoon, Jisu;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.211-213
    • /
    • 2014
  • Simultaneous measurements of planar laser-induced fluorescence (PLIF) of OH radicals and particle image velocimetry (PIV) were used to investigate the strain rates and OH structure characteristics of turbulent syngas non-premixed jet flames close to blowoff. Mean values of the maximum principal strain rate on OH layer decreases with the axial distance, and its standard deviation is significantly large upstream. Strain rate on stabilization region of the stable flame is only about a half of that of the flame near blowoff.

  • PDF

컴퓨터 기반 플라즈마 진단 기술

  • Gwon, Deuk-Cheol;Jeong, Sang-Yeong;Song, Mi-Yeong;Yun, Jeong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.95-95
    • /
    • 2016
  • 반도체 및 디스플레이 공정용 플라즈마 장치에서 플라즈마 변수를 측정하기 위한 방법들이 많이 개발되어 왔다. 전자 밀도와 온도는 정전 탐침이나 컷오프 프로브 등을 사용하여 활성종이나 중성종에 비해 상대적으로 쉽게 측정할 수 있고, 활성종과 중성종은 LIF (Laser Induced Fluorescence) 방법, OES (Optical Emission Spectrometry) 방법, 그리고 QMS (Quadrupole Mass Spectrometry) 방법 등을 이용하여 측정할 수 있으나 절대적인 크기를 측정할 수 있는 경우는 제한적인 것으로 알려져 있다. 이러한 문제를 극복하기 위해 측정한 전자 밀도와 전자 온도를 기반으로 하여 고려되는 종들의 밀도를 계산할 수 있는 프로그램도 제작된 바 있다. 개발된 프로그램의 입력 값으로 사용되는 플라즈마 화학반응 데이터베이스는 계산 결과의 정확성과 밀접한 관계가 있으며, 이런 이유로 신뢰성 높은 데이터베이스를 확보하기 위한 연구도 진행되었다. 개발된 프로그램을 이용하여 계산한 플라즈마 변수의 장비 변수에 대한 의존성이 진단 데이터와도 잘 부합하는 것으로 확인되었다.

  • PDF

액체로켓용 충돌형 인젝터의 질량분포 측정을 위한 PLLIF 기법에 대한 연구

  • 정기훈;고현석;이인수;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.1-1
    • /
    • 2002
  • PLLIF(Planar Laser Liquid Induced Fluorescence) 기법은 분무장을 교란시키지 않고 고해상도의 2차원 질량분포를 빠르게 측정할 수 있기 때문에 기존의 기계적인 분무 분포 측정방법의 한계를 극복하였을 뿐만 아니라 접근이 불가능하였던 인젝터 근방의 분무에 대한 중요한 정보를 제공하고 있다. 그러나 레이저 광을 받은 액적에 의한 산란광의 강도가 클 경우에는 인접한 액적들을 형광시킬 수 있고 액적의 형광신호가 액적들을 통과하면서 감쇠되는 이차산란에 의한 오차는 PLLIF 기법의 정량화에 가장 큰 난점으로 인식되고 있다. 특히 이러한 현상은 분무 분포의 밀도가 높고 액적의 크기가 클수록 강하게 나타나는데, 액체로켓에서 일반적으로 사용되고 있는 like-doublet 인젝터는 이러한 분무 특성을 갖는다. 따라서 Mechanical Patternator 및 PDPA(Phase Doppler Particle Analyzer)로부터 측정한 like-doublet 인젝터의 분무 질량 분포 결과와 비교하여 이차산란에 의한 오차를 파악하여 PLLIF 기법의 적용 가능성을 진단하였다.

  • PDF

NOx Emission Reduction and Mixing Enhancement of Turbulent Hydrogen Diffusion Flame by An Acoustic Excitation (음파가진에 의한 수소 확산 화염의 NOx 배출저감 및 혼합증진)

  • Han, Jeong-Jae;Kim, Mun-Ki;Yoon, Sang-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-313
    • /
    • 2005
  • Measurements of flame length, width and NOx emissions have been conducted to investigate the effect of an acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. The resonance frequency of oscillations was varied between 259 ,514 and 728 Hz with power rate of 0.405 and 2.88w. When these frequencies imposed to hydrogen flames, dramatic reduction of flame length and NOx emission was achieved. And acetone planar laser-induced fluorescence technique was used to measure a concentration of the near field of driven axisymmetric jet. The air-fuel stoichiometric line was plotted to investigate the mixing layer and development of air entrainment to fuel jet. Consequently, acoustic excitation on flame could enhance the air-fuel mixing resulting in abatement of NOx emission quantitatively.

  • PDF