• Title/Summary/Keyword: Laser heat treatment

Search Result 228, Processing Time 0.023 seconds

Effect of laser heat-treatment on microstructure and micro-hardness of HVOF-sprayed WC-CoCr coating

  • Zhang, Shi-Hong;Cho, Tong-Yul;Yoon, Jae-Hong;Fang, Wei;Joo, Yun-Kon;Song, Ki-Oh;Li, Ming-Xi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.138-139
    • /
    • 2007
  • The microstructure and micro-hardness of high velocity oxygen fuel-sprayed (HVOF) WC-CoCr coatings are comparatively studied for both before and after laser heat-treatment (LT) of the coatings. The results indicate that compared to HVOF WC-CoCro coating, the laser treatment has eliminated the pores almost entirely providing a more homogeneous and densified microstructure. And the compact interface of the coating with substrate is achieved by laser treatment. The thickness of the coating has decreased from 300 ${\mu}m$ to 225 ${\mu}m$ As a result, the average porosity is five times higher in HVOF coating than in the coating by laser treatment. The laser treatment has produced a considerable increment in the hardness of the coating near surface whose average value increases from Hv0.2=1262.4 in the HVOF-sprayed coating to Hv0.2=1818.7 in the coatings treated with laser.

  • PDF

Characteristics of Surface Hardening by Laser Power Control in Real Time of Spheroidal Graphite Cast Iron (실시간 출력 제어를 통한 구상흑연 주철의 레이저 표면경화 특성)

  • Kim, Jongdo;Song, Mookeun
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • This study is related to the surface hardening treatment to spheroidal graphite cast iron for die by using high power diode laser. Laser device used in this experiment is capable of real-time laser power control. This is because the infrared temperature sensor (two color pyrometer) attached to the optical system measures the surface temperature of specimen and adjusts the laser power in real time. The surface treatment was carried out with the change of heat treatment temperature at the beam travel speed 3 mm/sec. Hardened width and depth was measured and hardened zone was analyzed by micro vickers hardness test in order to research the optimum condition of heat treatment. The changes in microstructure of the hardened zone also was examined. As a result of hardness measurement and observations on microstructure of hardened zone, hardness increased over three times as compared with base metal because the martensite was formed on the matrix structure.

THERMOMECHANICAL STUDY OF LASER TREATED NiTi DENTAL ARCH WIRE

  • Kim, Young-Kon;Park, Joon-B.;Lakes, R.S.;Andreasen, G.F.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.9-12
    • /
    • 1989
  • A preliminary study has been conducted to demonstrate the effect of laser heat treatment on Ni Ti alloy dental arch wires ($0.016"\;{\times}\;0.022"$ and $0.018"\;{\times}\;0.026"$, rectangular shape). Changes in mechanical and thermal properties and surface morphologies are investigated by using optical and scanning electron microscope (SEM), energy dispersive x-ray microprobe analysis(EDX), differential scanning calorimeter (DSC), and micro hardness tester. The results indicate that the laser can affect the thermal equilibrium state of the localized surface. Titanium rich surface film is formed by the laser treatment. The surface film and rapidly resolidified underlying structures show better chemical resistance than the matrix material. Phase transition temperatures which are related to shape recovery temperatures are changed after laser treatment. Hardness of resolidified area and heat affected zone are lower than before treatment.

  • PDF

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

Study on the Surface Temperature and Laser Heat Conduction by the Computer Algorithm (컴퓨터 알고리즘에 의한 표면온도와 레이저 열전도에 관한 연구)

  • Lee, Young-Wook
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • This study deals with the computing the temperature change of surface to the increment of time and diffusivity, the heat flux during irradiation of laser. In addition, the computer algorithm for computing the penetration change of the corresponding surface irradiated is developed. The result of this study shows the possibility to treatment of cancer, abnormal cell and biological tissue during irradiation of laser.

  • PDF

Effects of Laser Surface Melting on the Pitting Resistance of Alloy 690 (Alloy 690의 공식저항성에 미치는 레이저 표면 용융의 영향)

  • Kim, Young-Kyu;Jhee, Tae-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • The effect of laser welding and surface treatment, developed as a method of repairing steam generator tubes, on the pitting corrosion resistance of alloy 690 was examined. The surfaces of some heat-treated Alloy 690 materials were melt-treated using the Nd-YAG laser beam, and then examined to characterize the microstructures. The resistance to pitting corrosion was evaluated by measuring of Ep(pitting potential) through the electrochemical tests and also by measuring the degree of pit generation through the immersion tests. The pit formation characteristics were investigated by observing microstructural changes and pit morphologies. The results show that the resistance to pitting corrosion increases in the order of the following list; solution annealed Alloy 690, thermally treated Alloy 690, and laser surface melt-treated Alloy 690. The melted region was found to have a cellular structure and fine precipitates. It was confirmed that the resistance of Alloy 690 to pit initiation and also to pit propagation was higher when it was laser treated than treated otherwise.

  • PDF

Residual Stress Analysis for Wide-band laser Heat Treatment Using Finite Element Method (유한요소법에 의한 광폭 레이저 표면경화의 잔류응력해석)

  • Kim, Jae-Do;Maeng, Ju-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.68-73
    • /
    • 1999
  • In this paper, the residual stresses for the wide-band laser heat treatment using a polygon mirror have been analyzed. The results of FE analysis are compared with the experimental results. ANSYS Version 5.3, a commercial FE-code, is used for the FE stress analysis. The structural analysis was performed on after thermal analysis. The residual stress distribution across the hardened area was measured by the X-ray diffraction technique. The laser hardening conditions, 2kW laser power and 2mm/s travel speed, were used for the experiment and the FE analysis. Analysis results, which is maximum tensile residual stress is about 143MPa and maximum compressive residual stress is about -380MPa. Under same parameters with the analysis, experimental results indicate that MTRS is about 152MPa and MCRS is about -312MPa. The experimental results is about 6% higher than the FE analysis. As a result, residual stress data from the experiment close well with that of the FE analysis.

  • PDF

Improving the Formability of an SUS316 Plate using Laser-induced Surface Heat Treatment and Cladding Processes (레이저 기반 표면 열처리 및 클래딩을 이용한 SUS 316 판재 성형성 향상)

  • Jo, Yeong-Kwan;Yu, Jae-Hyun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • We propose a practical method for increasing formability of a sheet metal plate using laser heat treatment (LHT) and cladding process. In this work, two kinds of process such as laser-induced heat treatment and cladding were utilized to evaluate the effect on formability of SUS316 sheets with different thickness of 1 and 3 mm. By using a vertically line-patterned tensile specimen that was LHTed or cladded on its surface, the process parameters of each surface treating method were studied and optimized. Through the basic test, we knew that the laser power of 900 W and scanning speed of 500 mm/min was the best condition for increase of formability. As the treatment results, ultimate tensile strength and elongation were increased as approximately 2.1 and 7.0%, respectively. To verify the usefulness of this work in industrial cases, we conducted a bulging test using with and without LHTed SUS316 sheet metal blanks. The results show that the bulging height of LHTed sheet was increased by 73% compared to that of the original one.

Finite Element Analysis for Breaking of Glass Using Laser (레이저를 이용한 유리절단의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • Glass is one of brittle materials. Generally, brittle material is weak for tensile stress but strong for compression stress. Laser breaking of glass used this brittle characteristics. Laser breaking of glass was simulated to optimize breaking condition by using commercial FEM code MARC which is applicable to thermo-mechanical coupling analysis. Various shapes of heat sources were applied to the analysis and the distance between heating and cooling source were varied for each simulation. The shapes of heat sources were circle, single and double ellipse and the distance was varied from 0mm to 30mm. Moving heat sources were designed on the basis of experimental condition. As a result, double elliptic shape of heat source was the most suitable among them in laser breaking of glass. And it should be useful to determine optimal condition of laser breaking for glass.

  • PDF