• 제목/요약/키워드: Laser heat treatment

검색결과 228건 처리시간 0.024초

Mechanical and thermal properties of 3D printing metallic materials at cryogenic temperatures

  • Jangdon Kim;Jaehwan Lee;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권2호
    • /
    • pp.24-30
    • /
    • 2024
  • Metal 3D printing is utilized in various industrial fields due to its advantages, such as fewer restrictions on production shape and reduced production time and cost. Existing research on 3D printing metal materials focused on changes in material properties depending on manufacturing conditions and was mainly conducted in a room temperature environment. In order to apply metal 3D printing products to cryogenic applications, research on the properties of materials in cryogenic environments is necessary but still insufficient. In this study, we evaluate the properties of stainless steel (STS) 316L and CuCr1Zr manufactured by Laser Powder Bed Fusion (LPBF) in a cryogenic environment. CuCr1Zr is a precipitation hardening alloy, and changes in material properties were compared by applying various heat treatment conditions. The mechanical properties of materials manufactured using the LBPF method are evaluated through tensile tests at room temperature and cryogenic temperature (77 K), and the thermal properties are evaluated by deriving the thermal conductivity of CuCr1Zr according to various heat treatment conditions. In a cryogenic environment, the mechanical strength of STS 316L and CuCr1Zr increased by about 150% compared to room temperature, and the thermal conductivity of CuCr1Zr after heat treatment increased by about 6 to 10 times compared to before heat treatment at 40 K.

A Study on the Microstructural, Thermal and Mechanical Properties of Silicon Nitride Ceramic

  • Kim, Jong-Do;Lee, Su-Jin;Lee, Jae-Hoon;Sano, Yuji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.1026-1033
    • /
    • 2009
  • Fine ceramics have high strength, excellent wear resistance, chemical stability and high strength at high temperature and are receiving attention in various fields such as construction, engineering, aerospace and marine science. Finish machining process is required to obtain precise ceramics components because sintering process necessary for obtaining high strength and high quality ceramics reduces the dimensions of components and precision of shape. But high strength and brittleness of ceramics materials cause difficulty in processing. So a process for obtaining wanted dimensions is studying using high temperature which makes ceramics softened and thermal affected recently. Laser beam is a very useful optical device for these kinds of processes. Laser process such as laser cutting, laser machining, laser heat treatment and laser-assisted machining(LAM) is researching to manufacture practical ceramics components using intense laser source which can cause local softening and damage of workpiece. In this paper, microstructural and mechanical properties of silicon nitride heated are studied as a basic study for researching of ceramics process by laser beam. The surface variation of HIP and SSN-silicon nitride was analyzed with SEM and EDS. A processing at $1,300^{\circ}C$ or above causes N element to combine into $N_2$ gas and the gas busts from surface. These phenomena make bloat, craters and heat defects on the surface of silicon nitride. Also, oxygen content is largely increased to oxidize the surface and it causes changing of phases and reducing of hardness of surface.

열처리 조건에 따른 Ag-In-Sb-Te 상변화 기록 박막의 미세 조직과 반사도의 관계 (Dependence of Microstructure and Optical Properties of Ag-In-Sb-Te Phase-Change Recording Thin Firms on Annealing Heat-Treatments)

  • 서훈;박정우;최우석;김명룡
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.9-14
    • /
    • 1996
  • The dependence of microstructural and optical properties of Ag-In-Sb-Te thin films on annealing heat-treatments was studied. It was found from the present work that the increase of reflectance after annealing heat-treatment is related with phase change of Ag-In-Sb-Te thin film from amorphous state to crystalline phases which involve Sb crystalline phase and AgInTe$_2$ stoichiometric phase. On the other hand, the reflectance is decreased after high temperature annealing (above 450$^{\circ}C$), due to the morphology .mange of film surface. For the purpose of practical application(erasable optical disk), we fabricated quadrilayered Ag-In-Sb-Te alloy disk, and annealed it with continuous laser beam. As result of this laser\ulcorner annealing treatment, we found that the increment of reflectance is 9.3% at 780nm wavelength. It might be considered that Ag-In-Sb-Te alloy optical disk is the big promising candidate for the erasable optical memory medium.

  • PDF

Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

  • Korkmaz, Fatih Mehmet;Bagis, Bora;Ozcan, Mutlu;Durkan, Rukiye;Turgut, Sedanur;Ates, Sabit Melih
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.287-295
    • /
    • 2013
  • PURPOSE. This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS. Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) ($75mm{\times}25mm{\times}3mm$). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion ($50{\mu}m$), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (${\alpha}$=.05). RESULTS. Denture liner tested showed increased peel strength after laser treatment with different parameters ($3.9{\pm}0.4-5.58{\pm}0.6$ MPa) compared to the control ($3.64{\pm}0.5-4.58{\pm}0.5$ MPa) and air-abraded groups ($3.1{\pm}0.6-4.46{\pm}0.3$ MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups ($3.1{\pm}0.6$ MPa). CONCLUSION. Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners.

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

La2O3-CaF2-Al2O3-SiO2 계 oxy-fluoride 결정화 유리의 광 발광 특성 (Photoluminescence properties of oxy-fluoride glass-ceramics of La2O3-CaF2-Al2O3-SiO2 system)

  • 하태완;강승구
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.84-88
    • /
    • 2021
  • 레이저, 광학센서 등에 사용되고 있는 La2O3-CaF2-Al2O3-SiO2 계 유리에 희토류 물질을 첨가하였을 때, 열처리 온도에 따른 결정화유리의 발광 특성 변화에 대하여 연구하였다. 결정화유리를 얻기 위한 열처리 조건은 비등온 열분석을 통해 얻었으며, 열처리 온도에 따른 결정성장 정도 및 생성된 결정상 종류를 파악하기 위해 XRD 분석을 진행하였다. Scherrer's equation을 이용한 결과, 결정화유리 내부에 25~40 nm 크기의 결정들이 생성된 것으로 계산되었다. Photoluminescence (PL) 분석결과, 660~670℃에서 1시간 열처리 된 시편이 가장 우수한 PL 강도를 보였으며, CIE 색좌표계 분석결과, 열처리 유무와 관계없이 모든 결정화유리 시편들은 red-orange 빛을 발광하는 것으로 나타났다.

레이저 빔에 의한 박판금속의 강화특성 (Characteristics of Strengthening for Thin Metals by Laser Beam)

  • 양세영;최성대;김기만;전재목;공병채
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.216-223
    • /
    • 2010
  • The general way to process the surface by means of the laser was heat treatment for strengthening the surface hardness. They have used the laser for changing the property of the surface, especially for metal. Generally, it is recent increasing tendency to use the thin plate panel for making things smaller and lightweight. However, thin plate should be strengthened or let the thin plate panel have moment of inertia by means of engraving the groove or wave on them for lightweight and strengthening. Therefore it is expected that the thin plate panel can be harder and more stable through processing the metal surface by laser beam irradiation and the hardness of thin plate possibly can be also changed how many parts of them are harden. Through this research, it can be grasped how the hardness and mechanical characteristic changes according to width and depth of groove by laser affect the max stress by the ratio of $A_H/A_T$ (hardening area/total area) and characteristic of displacement and structural characteristic for making the thin plate harder by the strengthening metal surface of thin plate by laser through the experiment and analysis of FEA can be presented.

Holographic Interferometry를 이용한 하악 구치부 도재소부 전장관용 금속 구조물의 굴곡성향에 대한 연구 (FLEXION EFFECTS OF HEAT TREATMENT AND POST-SOLDRING OF CERAMO-METAL FIXED PARTIAL DENTURE FRAMEWORKS USING HOLOGRAPHIC INTERFEROMETRY)

  • 최진웅;우이형;최부병
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.869-902
    • /
    • 1996
  • Flexion of a metal/ceramic fixed partial denture(EPD) frameworks under function can cause fracture of porcelain or deterioration of the cement seal. This study evaluated the flexion characteristics of three-unit mandibular FPD frameworks, repacing the second pre-molar under compressive load(200g, 400g). Testing was accompished with real-time holographic interferometry, using 6 porcelain fused-to metal frameworks. Tested alloys were non-precious alloy(Heracles, Holland), semi-precious alloy(Degudent U, Germany) and precious alloy(Degudent H, Germany). Changes of the fringe patterns according to the heat treatment(porcelain firing cycle), various loads(200g, 400g), occlusal forms(occlusal porcelain veneering, facial porcelain veneering), various alloys and post-soldering units were compared. Dental study model(Nissan dental products, Inc. D51DP-500A, Japan) and six 3-unit metal/ceramic fixed partial denture frameworks were used as experimental materials. 36 holograms were taken on fixed dental study model by using the 10mW He-Ne laser and real-time holographic interferometry. On the basis of this study, the following conclusions can be drawn : 1. In the frameworks for facial porcelain veneering, the semi-precious alloy framework was least deformed and precious alloy framework, non-precious alloy framework orderly before heat treatment, and the deformation was not shown great difference among three alloys after heat treatment and post-soldering. 2. In the frameworks for occlusal porcelain veneering, the precious alloy framework was greatest deformed and the deformation was not difference between semi-precious alloy framework and non-precious alloy framework before, after heat treatment, and the deformation was not shown great difference among three alloys after post soldering. 3. In the non-precious alloy frameworks for facial porcelain veneering and occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and conversely increased after post-soldering. 4. In the semi-precious alloy framework for facial porcelain veneering, the deformation was not detectable after heat treatment and increased after post-solder. And in the frame-work for occlusal porcelain veneering, the deformation was slightly decreased after heat treatment and increased after post-soldering. 5. In the precious alloy framework for facial porcelain veneering, the deformation was greatly decreased after heat treatment and increased after post-soldering, And in the framework for occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and decreased after post-soldering.

  • PDF

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF