• 제목/요약/키워드: Laser exposure

Search Result 195, Processing Time 0.024 seconds

Prediction of Photopolymer Solidification for Inclined Laser Beam Exposure (레이저 빛의 경사노광 시 광 경화성 수지의 경화형상 예측)

  • Kim, Young-Hyun;Lim, Jong-Seon;Yu, Gyu-Sang;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.98-104
    • /
    • 2010
  • It has been reported that the photopolymer solidification in the stereolithogrpahy process is mainly depend on the laser exposure conditions such as laser power and scanning speed. However, these researches were focused on the vertical laser exposure onto the surface of the photopolymer. In this research, we developed a mathematical model for the photopolymer solidification under the inclined laser beam exposure. Using the developed mathematical model, the photopolymer solidifications were simulated varying inclined laser exposure conditions. Developed mathematical model was in good agreement with the experimental result. This research can be applied to improve the surface roughness in the stereolithogrpahy process.

Double Exposure Laser Interference Lithography for Pattern Diversity using Ultraviolet Continuous-Wave Laser

  • Ma, Yong-Won;Park, Jun Han;Yun, Dan Hee;Gwak, Cheongyeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.9-14
    • /
    • 2019
  • The newly discovered properties of periodic nanoscale patterns have increasingly sparked research interests in various fields. Along this direction, it is worth mentioning that there had been rare studies conducted on interference exposure, a method of creating periodic patterns. Additionally, these few studies seemed to validate the existence of only exact quadrangle shapes and dot patterns. This study asserted the formation of wavy patterns associated to using multiple exposures of the ratio of the first exposure intensity to the second exposure intensity. Such patterns were designed and constructed herein via overlapping of two Gaussian beams relative to certain rotation angles, and with a submicron structure fabricated based on a 360-nm continuous-wave laser. Results confirmed that the proposed double exposure laser interference lithography is able to create circular, elliptical and wavy patterns with no need for complex optical components.

Effects of Various Laser Wavelengths and Power Densities on the Ocular Damage in Pigmented Rats

  • Chung, Phil-Sang;Shin, Jang-In;Chang, Moo-Hwan;Chang, So-Young;Kang, Jung-Wook;Hwang, Hee-Jun;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • With the widespread use of laser in medical and industrial settings, the incidence of laser injury to the ocular continues to grow among workers involved in handling lasers. The aim of this study is to compare ocular damages after irradiation with various laser wavelengths and power density. Ocular of pigmented rats was irradiated with $CO_2$ laser, 1064 nm Nd:YAG laser, and 532 nm diode laser. We observed damage of cornea, lens, and retina using slit lamp microscope and funduscopy. H&E staining of histopathology were applied to study the specimens. The higher exposure ($200mW/cm^2$, 10 sec) with $CO_2$ laser resulted in severe damage at the cornea. For the 1064 nm Nd:YAG laser, the higher exposure than $10mW/cm^2$ (10 sec) resulted in damage at the cornea and lens. Further, with the 532 nm diode laser, retinal lesions were induced when $10mW/cm^2$ (0.25 sec) was delivered to the eye. Theses results suggest that the ocular damages are different from various laser wavelength and power density.

  • PDF

Optical Properties of Ag/Chalcogenides Thin Films Exposed to Laser (레이저 광 노출에 따른 Ag/칼코게나이드 박막의 광학적인 특성)

  • 김종기;박정일;정흥배;이현용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.561-565
    • /
    • 1999
  • We measured the optical properties in Ag/chalcogenide films with the exposure of 325nm-Held laser In addition we have investigated the Ag doping mechanism as considering the changes of Ag-concentration distribution and optical energy gap ( $E_{op}$ ) with Photon-dose. The "windows" characteristics of Ag thin film occur around the wavelength of 325 nm and the Ag is evaluated to be transparent, without an absorption, in the region. While the $E_{op}$ of S $b_2$ $S_3$ thin film was changed largely by an exposure of HeNe laser(632.8 nm) an exposure of HeCd laser resulted in relatively small variation of $E_{op}$ . Therefore it is thought that photon absorption at the metal layer plays an important role in Ag photodoping.on at the metal layer plays an important role in Ag photodoping.

  • PDF

A Scheme to Control Laser Power and Exposure Time for Fabricating Precise Threedimensional Microstructures in Nano-stereolithography (nSL) Process (3 차원 나노 스테레오리소그래피의 정밀화를 위한 펨토초 레이저 출력-조사시간 제어방법)

  • 박상후;임태우;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1365-1368
    • /
    • 2004
  • A scheme to control the laser power and the exposure time was studied to fabricate precise microstructures using the nanostereolithography (nSL) process. Some recent works have shown that a three-dimensional (3D) microstructure can be fabricated by the photopolymerizing process which is induced by two-photon absorption (TPA) with a femtosecond pulse laser. TPA provides the ability to confine photochemical and physical reactions within the order of laser wavelength, so neardiffraction limit features can be produced. In the nSL process, voxels are continuously generated to form a layer and then another layer is stacked in the normal direction of a plane to construct a 3D structure. Thus, fabrication of a voxel with low aspect ratio and small diameter is one of the most important parameters for fabricating precise 3D microstructures. In this work, the mechanism of a voxel formation is studied and a scheme on the control of laser power and exposure for minimizing aspect ratio of a voxel is proposed.

  • PDF

MAGNETIC RESONANCE IMAGING AND HISTOPATHOLOGIC CORRELATIONS OF FOCAL LESIONS INDUCED BY LASER (레이저 조사후 자기공명영상과 조직학적 소견의 상호일치도)

  • 이정구;정필상;정필섭;조정석;김상준
    • Korean Journal of Bronchoesophagology
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1996
  • Laser therapy is becoming an accepted procedure for tissue coagulation and ablation and is especially useful in treating tumors. The laser energy is applied to the tissue of interest through various delivery systems which are introduced percutaneously, via blood vessels, through body openings, or during surgical exposure of the tissue. One of the major obstacles to effective application of lasers has been the lack of reliable method to determine the extent of tissue involvement in real time. Several methods have been proposed for monitoring the tissue response and controlling the laser in real time during laser therapy. Among them, magnetic resonance imaging(MRI) has been introduced to monitor laser-tissue interactions because laser irradiation induces changes not only in the thermal motions of the hydrogen protons within the tissue but also in the distribution and mobility of water and lipids. The buttocks of New Zealand rabbits were treated by KTP and $CO_2$laser(power : 10 watts, exposure time:10 seconds). m images were taken at immediately after lasering, 1 week later, 2 weeks later, and at the same time, tissues were harvested for histopathologic study. We analyzed MR images and histopathologic findigs of laser-treated tissues. The MR images taken immediately after laser treatment showed 3 layer pattern and which was correlated with histopathologic changes. We suggest MRI may become a useful monitoring tools for laser-tissue interaction.

  • PDF

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak;Ji Yong Joo;Jun Ho Lee;Ji In Kim;Soo Hyung Cho;Ki Soo Park;Eui Seung Son
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.382-390
    • /
    • 2024
  • Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

Sensitization of Periodontitis Disease Causing Bacteria by Low Power He-Ne Laser Radiation

  • Satsangi, Akash Tripathi;Mathur, Manish;Saxena, Parul;Prasad, Guru;Shrivastava, Jitendra Nath;Shrivastava, Jenendra Nath;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.55-59
    • /
    • 2004
  • The present investigation is an attempt to create an optimized protocol for a bactericidal modality of different powers of He-Ne laser radiation to eliminate periodontitis disease causing bacteria from dental plaques. Periodontitis is most prevalent infectious disease of men and caused by a limited number of Gram negative oral bacteria. Porphyromonas gingivalis and Streptococcus sanguis are the important bacteria responsible for periodontitis diseases. Effect on periodontitis disease causing bacteria were produced by the exposure of different powers of He-Ne laser light i.e. 9 mW, 17 mW and 26 mW of red colour of wavelength 632.8 nm in two different periods of time i.e. 10 min. and 20 min. in the presence of dye Methylene blue (MB) used as a photosensitizer. The results have been shown in terms of percentage inhibition of colony forming units (cfu.) of bacteria. This study has shown that maximum inhibition of cfu. were observed in Laser+MB-20 min. exposure time. This inhibition was followed by Laser+MB-10 min., but minimum inhibition was seen in Laser only at 10 min. exposure. In case of effect of methylene alone on the cfu. of bacteria, it was seen that MB have not shown more inhibition of cfu. and it had shown that the no. of cfu. are very similar to that of control. The above observation of the present study was seen in case of every 3 different type of used powers of laser for both the bacteria. Maximum percentage inhibition of cfu. were seen in case of 26mW powers of He-Ne laser, which was 67. 28% to 61.42% for Porphyromonas gingivalis and Streptococcus sanguis respectively. So, increasing the power of laser (safe range for dentistry is 3-30 mW) under conditions shows an increased percentage inhibition of cfu. Thus the present investigation may be a useful adjunct with mechanical debridement in the prevention of recolonization of subgingival lesions by pathogenic microorganisms which are harmful and drug resistant.

  • PDF