• Title/Summary/Keyword: Laser droplets

Search Result 70, Processing Time 0.025 seconds

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

Studies on Changes of the Droplets by Bubbles in Piezoelectric Inkjet Head (잉크젯 헤드내 발생한 기포에 따른 토출 변화 연구)

  • Yoo, Young-Seuck;Kim, Young-Jae;Sim, Won-Chul;Park, Chang-Sung;Park, Jung-Hoon;Kang, Pil-Joong;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1544-1545
    • /
    • 2007
  • 본 논문은 피에조방식으로 구동하는 MEMS 구조의 산업용 잉크젯 헤드를 제작하여 잉크를 충진하여 토출하는 과정에서 토출이 되지 않는 원인 중 하나인 기포에 대해서 연구하였다. 기포를 직접 관찰하기 위한 방법으로 투명한 유리로 Membrane을 제작하여 기포가 발생하여 거동하는 모습을 관찰하였으며 Actuator가 구동하는 헤드내 기포를 구동 중에 관찰하기 위한 방법으로 LDV(Laser Doffler Vibrometer)를 이용하였다. 그 결과, 구동하면서 발생하는 변위의 미세한 차이를 관찰할 수 있었으며 주파수 data의 차이를 관찰함으로써 기포의 크기에 따른 토출의 양태를 구별할 수 있었다.

  • PDF

EXPERIMENTS ON THE INTERACTION OF WATER SPRAYS WITH POOL FIRES

  • Han, Yong-Shik;Kim, Myung-Bae;Shin, Hyun-Dong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.518-525
    • /
    • 1997
  • A series of measurements and visualization to investigate the interaction of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperatures, $O_2$, $CO_2$, and CO concentrations along the plume centerline are carried out to observe pool fire structures without water sprays. Visualization by the Ar-ion laser sheet shows flow pattern of droplets of the sprays above the pool fires. It is observed that in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a rapid decrease do not continue till the extinction point.

  • PDF

Structures of OH Emulsion Prepared with Saccharide Surfactants (당류계 계면활성제로 제조된 O/W 에멀젼의 구조)

  • 홍세흠;한창규;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.261-274
    • /
    • 2000
  • The o/w emulsions were prepared with saccharide surfactants which were sucrose monostearate(S160), sucrose distearate(S110), and POE(20) methyl glucose stearate(SSE20). And for emulsion the oils used were n-hydocarbon, squalane(SQ), liquid paraffin(LP), octylpalmitate(OP), octylstearate(OS), alkyl benzoate(AB), isostearyl benzoate(ISB). The structures of o/w emulsion droplet were investigated by laser light scattering and the fractal dimensions were calculated from light intensity curves. Increasing of concentration, chain length, and nonpolarity of oils, fractal dimensions of emulsion droplets were found greater. In general fiactal dimensions were varied from 1.7 to 2.8 and its structures were fractal But the fractal dimensions of octadecane( $C_{18}$), 50, and LP emulsified with S110 and S160 were varied from 3.0 to 3.2 and its structures were more dense. The overall fractal dimensions of S110 and S160 were varied from 2.1 to 2.6, that of SSE20 were varied from 1.5 to 2.1. So it was found that the structures of SSE20 system were less compact than that of S110 and S 160 system, because the hindrance effect of polyoxyehtylene group of SSE20 was stronger than that of sucrose of S160. The strucures of emulsion droplets changed according to the nature of emulsifiers and to compositions of oil substances which they contained, and the structures were found similar when the hydophilic moiety of emulsifiers was same.

  • PDF

An Experimental Study on Droplet Size according to Discharge Coefficient of Sprinkler Head (스프링클러 헤드의 방수상수에 따른 물방울 크기에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • The sprinkler system is a basic fire extinguishing system that uses water as an extinguishing agent. In order to evaluate the fire extinguishing performance of the sprinkler system, information such as the discharge angle, discharge speed, discharge pressure, flow rate, and water droplet size of the installed head are required. However, there is a lack of research on droplets size compared to other requirements. In this study, to evaluate the extinguishing characteristics of sprinkler system, the droplet size distribution was measured for various types of sprinkler heads actually used. The size of the droplet was measured using laser diffraction method. The 50% cumulative volume distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the Rosin-Rammler index value are presented. As a result of the fire simulation with FDS, it was confirmed that the performance difference occurs according to the water droplet size distribution even when the same amount of water is used. Therefore, the extinguishing performance of the sprinkler system should be evaluated considering the droplet size distribution according to the sprinkler head type.

Evaluation of Combustion Mechanism of Droplet Cluster in Premixed Spray Flame by Simultaneous Time-Series Measurement (동시 시계열 계측에 의한 예혼합 분무화염 내 유적군 연소기구의 평가)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.442-448
    • /
    • 2009
  • To evaluate the combustion mechanism of each droplet cluster downstream of the premixed spray flame, the simultaneous time-series measurements were conducted by using optical measurement system consisting of laser tomography, multi-color integrated Cassegrain receiving optics (MICRO) and phase Doppler anemometer (PDA). Furthermore, the group combustion number of droplet cluster was estimated experimentally, and the combustion mechanism of droplet cluster was examined applying the theoretical analysis. The group combustion number, $G_c$, was experimentally estimated about all droplet cluster verified by planar images, and it was classified into the internal group combustion mode and the external group combustion mode according to the theoretical analysis. It is found that there are cases in which the group combustion number estimated experimentally for droplet cluster agree or disagree with the classification by theoretical analysis. The reason of disagreement is considered due to that the group combustion number was only estimated by the geometrical arrangement of droplets in cluster, and that the actual phenomenon is three-dimensional but the measurement system is two-dimensional.

An Experimental Study on the Injector-spray Behavior of a Liquid-propellant Thruster (액체추진제 추력기의 인젝터 분무 거동에 대한 실험적 연구)

  • Kim, Jin-Seok;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.799-804
    • /
    • 2007
  • The behavior of spray emanating from an injector to be employed in a liquid-propellant thrust chamber is investigated by optical measurement techniques. The injector has eight holes, each of which has 30 cant angle from the center-axis with the diameter of 0.406 mm. In order to examine an atomization process according to the spray-generation conditions and the evolution along spray downstream, variational features in the velocity and size of droplets obtained through Dual-mode Phase Doppler An 799emometry (DPDA) are delineated and discussed together with instantaneous plane images captured by using Nd:Yag laser sheet beam. A categorization of spray-flow regime representing the atomization and turbulent nature is made through evaluating the non-dimensional parameters, i.e., Reynolds number and Weber number based upon the theoretical injection velocity. These qualitative and quantitative data of spray breakup will be a firm basis for the design of brand-new thruster

Visualization and Flowfield Measurements of the Vortical Flow over a Double-Delta Wing

  • Sohn, Myong-Hwan;Jang, Young-IL
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The vortical flow of a 65-deg flat plate delta wing with a leading edge extension(LEX) was examined through off-surface visualization, 5-hole probe and hot-film measurements. The off-surface flow visualization technique used micro water droplets generated by a home-style ultrasonic humidifier and a laser beam sheet. The angles of attack ranged from 10 to 30 degrees, and the sideslip angles ranged from 0 to -15 degrees. The Reynolds number was $1.82{\times}10^5$ for the flow visualization, and $1.76{\times}10^6$ for the 5-hole probe and hot-film measurements. The comparison of the visualization photos and the flow field measurement showed that the two results were in a good agreement for the relative position and the structure of the wing and LEX vortices, even though the flow Reynolds numbers of the two results were much different. The wing vortex and the LEX vortex coil each other while maintaining a comparable strength and identity at zero sideslip. Neither a looping of the wing vortex around the strake vortex, nor the lopsided coiling of the stronger strake and the weaker wing vortices was observed. At non-zero sideslip, the downward movement of the LEX vortex when going downstream was enhanced on the windward side, and the downward and inboard movement of the LEX vortex when going downstream was suppressed on the leeward side. The counterclockwise coiling of the wing and LEX vortices was decreased significantly on the leeward side.

The Effects of Driving Waveform of Piezoelectric Industrial Inkjet Head for Fime Patterns (산업용 압전 잉크젯 헤드의 구동신호에 따른 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1621-1622
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristic s were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets up to 20kHz, 4.4m/s and above 8pL at the different applied driving waveforms.

  • PDF

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.