• Title/Summary/Keyword: Laser cladding process

Search Result 37, Processing Time 0.025 seconds

Development of A Laser Cladding Process Monitoring System (I) -Extraction of optimal process variables (레이저클래딩 공정 모니터링 시스템 개발 (I) - 최적공정변수 추출)

  • 오기석;윤길상;조명우;김문기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.89-92
    • /
    • 2000
  • Laser claddmg 1s thc deposition of material on the surface of a part or workpiece. Cladding of metals produces a 100% dense metallurgically-bonded coating with minimal dilution for enhanced corrosion, abrasion and wear resistance. Despite of minimal heat Input and reduced processing time, cladding quality 1s affected by various process condition such as laser power and feed rate. Therefore, it is necessary to develop the momtoring and control methods of laser cladding process for the best cladding quality. In this paper, laser cladding monitoring system using CCD camera for measuring cladding pool shape, and photo-diode sensor for detecting optical signal emitted from the cladding front is introduced The variables extracted using this system can be apphed to control the laser cladding system to achieve the best claddmg results..

  • PDF

Cladding of Cu and Bronze/Al Alloy by $CO_2$ Laser (고출력 $CO_2$레이저빔에 의한 구리, 청동/알루미늄 합금 클래딩)

  • 강영주;김재도
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.109-115
    • /
    • 1997
  • Laser cladding is a technique for modification of metal surface. In this laser cladding experiment a metal powder feeding system was developed for more efficient laser cladding. This system can reduce processing time and be used simpler than the conventional method. The feeding of metal powder has given a rise to the process for sequential buildup of bulk rapidly solidified materials in the form of fine powder stream to the laser cladding process. The parameters of laser cladding have been investigated using this experimental equipment. Bronze on aluminum alloy and copper on aluminum alloy were experimented by using defocused beam, powder feeding system, and gas shielding. Good cladding was achieved in the range of beam travel speed of 2.25m/min. In the case of copper/aluminum and bronze/aluminum substrate, the absorption of laser beam was too high to produce low diluted clad. In the case of copper/1050 aluminum, the optimal laser cladding condition was of laser power of 2.8kW, powder feed rate of 0.31g/s and beam travel speed of 2.25m/min. In the case of bronze/aluminum the optimal condition is of laser power of 2.5kW, powder feed rate of 0.31g/s, and beam travel speed of 2.36m/min.

  • PDF

A Study on Characteristics of Laser Cladding Layer of STS316L (STS316L 분말의 레이저 클래딩층 특성에 관한 연구)

  • Hong, SungMoo;Oh, JaeYong;Kim, DongSeob;Chang, SeungCheol;Shin, BoSung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.53-56
    • /
    • 2017
  • Laser cladding is a technique for forming beads by melt-sintering with a laser while directly feeding metal powder onto the base material through nozzles. This technique, which is applied in laser surface treatment technology, is useful for repairing broken or worn parts by allowing selective formation of the surface layer of the base metal material. In this paper, laser cladding process was performed on STS316L powder using high power continuous wave laser with IR wavelength and the cladding characteristics according to process conditions were experimentally analyzed.

Process Development of Laser Cladding for Weld Inlay Repair of Dissimilar Metal Weld in Reactor Vessel In/Outlet Nozzles (원자로 입출구 노즐 이종금속 용접부 Weld Inlay 레이저 클래딩 공정 개발)

  • Cho, Hong Seok;Jung, Kwang Woon;Mo, Min Hwan;Cho, Ki Hyun;Choi, Dong Chul;Lee, Jang Wook;Cho, Sang Beum
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • This study was investigated to develop process technology of laser cladding with austenite stainless steel for Weld Inlay repair of dissimilar metal weld in reactor vessel in/outlet nozzles. Weld Inlay experiments were performed by laser cladding repair system consisting of common manipulator, laser apparatus and welding process scheduler, etc. Single pass welding experiments were conducted in order to obtain the optimum welding process parameters for filler wires of ER309L and Alloy 52M before multi-layer laser cladding. Based on the above obtained results, multi-layer laser cladding experiments were carried out, and welding qualities for weld specimens were estimated by PT, OM, SEM and EDS analysis. Consequently, it was revealed that multi-layer laser cladding on austenite stainless steel using filler wires of ER309L and Alloy 52M could be possible to meet ASME Code standard without any weld defect.

Feasibility Study of Laser Cladding for Co-based Coating on SCM440 and GC250 (Co-base 분말을 적용한 SCM440과 GC250의 레이저 클래딩 가공성 평가)

  • Choi, Byungjoo;Lee, Moon G.;Hong, Minsung;Ahn, Byungmin;Jung, Do-Hyun;Lee, Kwangjae;Lee, Chunggeun;Jeon, Yongho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • The laser cladding process on structural steel (SCM440) and gray cast iron (GC250) substrates with Co-based powder (Stellite 12) was studied. A diode laser (2 kW) was used as a heat source, and the powder was supplied by a disc rotary powder feeder. The relationship between the laser cladding process and the cross-sectional analysis of coating was examined based on coating shape and microstructure. Additionally, the microhardness was measured to confirm the mechanical property improvements. As a result, proper laser cladding conditions were selected through this study and verified by cross-sectional analysis. In addition, the evaluation process for laser cladding feasibility was conducted on the selected materials.

Characteristic of Laser Cladding Process with High Viscosity Bronze Powder and Al-alloy (고점성 청동분말을 이용한 알루미늄 합금의 레이저 클래딩 특성)

  • 오동수;전병철;김재도
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2001.05a
    • /
    • pp.31-34
    • /
    • 2001
  • Laser cladding Processing allows rapid transfer of heat to the material being minimum conduction into base metal. The effects of CO$_2$ laser cladding with high powder were investigated. High viscosity bronze powder consists of bronze powder used at a high temperature. The material has a high viscosity So that it can be substrate. Therefore. Laser cladding can be processed on a curved or slope surface. CO$_2$ laser cladding was designed It consists of the high viscosity bronze powder the shielding gas system and the preheating system The high viscosity powder properly at 0.3g/s and 0.50g/s. Because of the metallic bond between bronze per the hardness of dilution layer was suddenly increased. Experimental as results viscosity mixed powder can be a useful cladding material.

  • PDF

Study on Wetting Characteristics of Laser Cladding Surfaces (레이저 클래딩 표면에 대한 젖음 특성에 관한 연구)

  • Jang, Mu-Yeon;Park, Young-Whan;Kim, Tae-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2019
  • Laser processing has been used in various fields. In this study, the feasibility of a hydrophobic surface was investigated through the laser cladding technique. A diode laser was used, and the output was set to 600-800 W. Seven different specimens were prepared with different cladding widths and spacings, and the contact angles for water droplets were evaluated. As a result, the contact angle of water droplets measured in the direction parallel to the cladding line was higher than that in the vertical direction. The wider the cladding width and the cladding space, the higher the contact angle in the parallel direction. It is thought that when a higher contact angle is formed in the parallel direction, more air can be placed in the valley between the cladding lines. In addition, for the hydrophobic coating effect, the contact angle of the coated cladding surface was increased by about $5-15^{\circ}$ as a whole compared to the coated smooth surface. It was confirmed that the wetting characteristics were improved through the cladding.

Comparison of Powder Feeding and Wire Feeding in Laser Cladding (분말송급 및 와이어송급을 이용한 레이저 클래딩 특성)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.13-16
    • /
    • 2013
  • In this research, laser cladding characteristics were investigated for various filler metal feeding methods such as powder, cold wire, and hot wire feeding. Appropriate parameter window, deposition rate, material efficiency and dilution for each filler feeding method were evaluated with same laser power and cladding speed range. Laser powder cladding has wider process parameter window but higher material efficiency and lower dilution were achieved by laser wire cladding. Among these feeding methods, laser hot-wire cladding showed best efficiency in material usage and deposition rate.

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

Characteristics of $CO_2$ Laser Cladding with High Viscosity Mixed Powder (용제와 혼합한 금속분말의 $CO_2$ 레이저 클래딩 특성)

  • 김재도;전병철;이영곤;오동수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.481-485
    • /
    • 2001
  • Laser cladding processing allows rapid transfer of heat to the material being processed with minimum conduction into base metal. The effect of $CO_2$ laser cladding with high viscosity mixed powders was investigated. High viscosity mixed powder consists of bronze powder and flux that is used at a high temperature condition. The mixed powder has a high viscosity that it can be easily pasted over a curved or slope substrate. The device for mixed powder was designed and manufactured. It consists of the high viscosity mixed powder feeding system, the preheating system and the shielding gas system which prevents the clad layer from being oxidized. The results of experiment indicated that the feed rate of high viscosity mixed powder was important for later cladding with mixed powder feeding. The high viscosity mixed powder and substrate must be preheated to prevent porosity from breaking at the clad layer. The experimental result shows that the high viscosity mixed can be applied for laser cladding process.

  • PDF