• Title/Summary/Keyword: Laser beam deflection technique

Search Result 7, Processing Time 0.026 seconds

Application of Laser Beam Deflection Technique to Analysis of Stresses Generated during Hydrogen Diffusion through Pd Foil Electrode

  • Han Jeong-Nam;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.70-76
    • /
    • 2001
  • The present work describes the capabilities of laser beam deflection (LBD) technique for the analysis of the stresses developed during hydrogen diffusion through Pd foil electrode. First, we explain briefly the elasto-diffusive (Gorsky effect) and diffusion-elastic phenomena. A model for the diffusion-elastic phenomenon is theoretically derived from the solution of the Fick's equation for given initial and boundary conditions, Vegard's second law and Hooke's law. Second, we introduce how to apply the principle of LBD technique to the study on the stresses generated during hydrogen diffusion. From the comparison of the deflection transients numerically calculated with those experimentally measured, we finally discuss the change in the tensile deflection with time in terms of hydrogen concentration profile transient and hydrogen diffusivity.

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

Effect of the Incident Optical Spot Size Upon the Quadrant Photodetector on the Optical Displacement Detection Sensitivity (4분할 광 검출기 상의 광점 크기가 변위 측정감도에 미치는 영향)

  • Lee, Eun-Joong;Lee, Jin-Woo;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.71-74
    • /
    • 2008
  • In this paper, we have measured the effect of the optical spot size, incident upon the quadrant photodetector, on the optical displacement sensitivity of the optical beam deflection technique. We have built an optical displacement detection system based on the optical beam deflection method using 3 mW He-Ne laser and measured the displacement sensitivity with changing the optical spot size on the quadrant photodetector. We have also calculated the changes in the optical displacement sensitivity as a function of the incident laser spot size by modeling a circular optical spot with constant laser intensity. Our experimental and theoretical studies show that the optical displacement sensitivity increases with the decrease in the optical spot size. This suggests that in the design of the optical motion detection systems with sub-nanometer sensitivity, the displacement sensitivity can be optimized by reducing the size of the incident optical spot on the detector.

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Design Verification of the DY (Deflection Yoke) Using a CAI (Computer-Aided Inspection) Technique (전산역설계(Reverse Engineering) 기술을 이용한 편향코일(DY)의 설계 검증 연구)

  • 윤정호;전형환;최광일;김용환;이관행
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-30
    • /
    • 1998
  • The deflection yoke (DY) controls the direction of the electron beam that falls on the screen of the television monitor. Its quality depends on the shape and density of coils wound around the DY coil separator. Winding frames are used to make these coils, and therefore, their shapes are essential in making quality coils. A reverse engineering(RE) is applied to create the 3D model of the winding frame. It considerably shortens the design verification time and shows the level of accuracy that is feasible in the production mode. The paper explains each step of the reverse engineering process in detail.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.