• Title/Summary/Keyword: Laser Vision

Search Result 334, Processing Time 0.025 seconds

Obstacle Classification for Mobile Robot Traversability using 2-dimensional Laser Scanning (2차원 레이저 스캔을 이용한 로봇의 산악 주행 장애물 판단)

  • Kim, Min-Hee;Kwak, Kyung-Woon;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Shin, Chan-Bai;Kim, Jin-Dae;Lee, Jeh-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.231-233
    • /
    • 2007
  • In this paper we present a new visual approach for the robust bin-picking in a two-step concept for a vision driven automatic handling robot. The technology described here is based on two types of sensors: 3D laser scanner and CCD video camera. The geometry and pose(position and orientation) information of bin contents was reconstructed from the camera and laser sensor. these information can be employed to guide the robotic arm. A new thinning algorithm and constrained hough transform method is also explained in this paper. Consequently, the developed bin-picking demonstrate the successful operation with 3D hole object.

  • PDF

Occurrence of Trochlear Nerve Palsy after Epiduroscopic Laser Discectomy and Neural Decompression

  • Yoon, Keon Jung;Lee, Eun Ha;Kim, Su Hwa;Noh, Mi Sun
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.199-202
    • /
    • 2013
  • Epiduroscopic laser discectomy and neural decompression (ELND) is known as an effective treatment for intractable lumbar pain and radiating pain which develop after lumbar surgery, as well as for herniation of the intervertebral disk and spinal stenosis. However, various complications occur due to the invasiveness of this procedure and epidural adhesion, and rarely, cranial nerve damage can occur due to increased intracranial pressure. Here, the authors report case in which double vision occurred after epiduroscopic laser discectomy and neural decompression in a patient with failed back surgery syndrome (FBSS).

Development of docking system using laste slit beam (LSB를 이용한 Docking System 개발)

  • 김선호;박경택;최성락;변성태;이영석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.309-314
    • /
    • 1999
  • The major movement block of the containers is range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of it's movement in conventional container terminal. In unmanned container terminal, UCT(unmanned container transporter) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The unmanned container terminal facilities must have docking system that guided landing line to have high speed travelling and precision positioning in unmanned container terminal. The general method for docking uses the vision system with CCD camera, infra red, and laser. This paper describes the investigation for the developed docking method in view point of merit and demerit and introduces 속 result of developing the docking system with LSB(laser slit beam).

  • PDF

3D Extraction Method Using a Low Cost Line Laser (라인레이저를 이용한 3D 모델 추출 방법)

  • Yun, Chun Ho;Kim, Tae Gi;Cho, Yong Wook;Nam, Gi Won;Yim, Choong Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.108-113
    • /
    • 2017
  • In this paper, we proposed a three-dimensional(3D) scanning system based on laser vision technique for 3D model reconstruction. The proposed scanning system consists of line laser, camera, and turntable. We implemented the 3D scanning system using low quality elements. Although these are low quality elements, we reduced the 3D data reconstruction errors greatly using two methods. First, we developed a maximum brightness detection algorithm. This algorithm extracts the maximum brightness of the line laser to obtain the shape of the object. Second, we designed a new laser control device. This device helps to adjust the relative position of the turntable and line laser. These two methods greatly reduce the measuring noise. As a result, point cloud data can be obtained without complicated calculations.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Breakage Detection of Small-Diameter Tap Using Vision System in High-Speed Tapping Machine with Open Architecture Controller

  • Lee, Don-Jin;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1055-1061
    • /
    • 2004
  • In this research, a vision system for detecting breakages of small-diameter taps, which are rarely detected by the indirect in-process monitoring methods such as acoustic emission, cutting torque and motor current, was developed. Two HMI (Human Machine Interface) programs to embed the developed vision system into a Siemens open architecture controller, 840D, were developed. They are placed in sub-windows of the main window of the 840D and can be activated or deactivated either by a softkey on the operating panel or the M code in the NC part program. In the event that any type of tool breakage is detected, the HMI program issues a command for an automatic tool change or sends an alarm signal to the NC kernel. An evaluation test in a high-speed tapping machine showed that the developed vision system was successful in detecting breakages of small-diameter taps up to M1.

Development of Multi-functional Laser Pointer Mouse Through Image Processing (영상처리를 통한 다기능 레이저 포인터 마우스 개발)

  • Kim, Yeong-Woo;Kim, Sung-Min;Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1168-1172
    • /
    • 2011
  • Beam projector is popularly used for presentation. In order to pay attention to local area of the beam projector display, a laser pointer is used together with a pointing device(Mouse). Simple wireless presenter has limited functions of a pointing device such as "go to next slide" or "back to previous slide" in a specific application(Microsoft PowerPoint) through wireless channel; thus, there is inconvenience to do other tasks e.g., program execution, maximize/minimize window etc. provided by clicking mouse buttons. The main objective of this paper is to implement a multi-functional laser-pointer mouse that has the same functions of a computer mouse. In order to get position of laser spot in the projector display, an image processing to extract the laser spot in the camera image is required. In addition, we propose a transformation of the spot position into computer display coordinates to execute mouse functions on computer display.

Development of a Noncontact Three Dimensional Foot Form Measurement System with a Stereo Vision Method (스테레오 비젼을 이용한 비접촉 3차원 족형 측정 시스템 설계)

  • 김시경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1017-1021
    • /
    • 2004
  • In this paper, a cost-effective integrated 3D system for measuring and sizing foot is proposed. The proposed system employs two CCDs and a laser line projector which are capable of accurately measuring foot. The measurement is based upon the biologically motivated stereo vision principle providing ruggedness against minor system distortions. According to the tolerance, calibration between two different views are implicitly applied. Furthermore, the measurement system employs a measurement base, a frame grabber, a CCD moving cart, a stepping motor and computer. Analysis and design procedure is presented for the calculation of the 3D foot data and the proposed system. Experimental results on the proposed system would verify the concept and system operation.

Localization of Mobile Robot Using Active Omni-directional Ranging System (능동 전방향 거리 측정 시스템을 이용한 이동로봇의 위치 추정)

  • Ryu, Ji-Hyung;Kim, Jin-Won;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.483-488
    • /
    • 2008
  • An active omni-directional raging system using an omni-directional vision with structured light has many advantages compared to the conventional ranging systems: robustness against external illumination noise because of the laser structured light and computational efficiency because of one shot image containing $360^{\circ}$ environment information from the omni-directional vision. The omni-directional range data represents a local distance map at a certain position in the workspace. In this paper, we propose a matching algorithm for the local distance map with the given global map database, thereby to localize a mobile robot in the global workspace. Since the global map database consists of line segments representing edges of environment object in general, the matching algorithm is based on relative position and orientation of line segments in the local map and the global map. The effectiveness of the proposed omni-directional ranging system and the matching are verified through experiments.