• Title/Summary/Keyword: Laser Vibrometer

Search Result 163, Processing Time 0.028 seconds

Characterization of Frequency Separation in Polymer Membranes Mimicking a Human Auditory System (생체 청각기구를 모사한 폴리머 박막의 주파수 분리 특성 평가)

  • Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.516-521
    • /
    • 2011
  • The basilar membrane, an important functional part of the cochlea, is responsible for spectral separation of vibration signals transmitted from the stapes. In current study, scaled-up polymer membranes designed by mimicking the human basilar membrane were used for investigation of the frequency-separation characteristic. Displacement field formed on each polymer membrane was acquired by Laser Doppler scanning vibrometer and post-processed frequency-wise. The locations of the maximum displacement along the centerline were identified and collected for individual frequency range to produce the frequency-position map of individual polymer membrane. The influences of the membrane thickness and material properties on the variation of the frequency separability were discussed.

A study on the measurement of vibration using Laser Doppler Interferometer (레이저 도플러 간섭계를 이용한 진동 측정에 관한연구)

  • Kim, Chang-Hyun;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1738-1740
    • /
    • 1996
  • Laser Doppler Vibrometer using heterodyne method with a 632.8 nm He-Ne laser, has been developed for the measurement of small displacement and velocity. The measurement uses heterodyne method can be made insensitive to undesired vibration effect acting the system and can yield the sign of Doppler shift at the expense of increased complexity. A Bragg cell gives a frequency shift of 40MHz for heterodyne method. Frequency Modulated output is detected by spectrum analyzer.

  • PDF

A Study on the method for the measurement of vibrating amplitude and frequency with Laser Doppler Vibrometer (레이저 도플러 진동계를 이용한 진동변위와 주파수 측정방법 연구)

  • Kim, Seong-Hoon;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1824-1827
    • /
    • 1998
  • A Laser Doppler Vibrometer(LDV) was developed using He-Ne laser as a light source. The heterodyne method was employed and its output signal was digitally processed with a $\mu$-processor and the result was displayed with LCD. The frequency shifted object beam(40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was recombined with reference beam at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. With the same method, the fringe pattern signal of the moving surface is obtained. This fringe pattern signal is converted to TTL signal with ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration, which is displayed with LCD. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

Noncontact Laser Ultrasonic Imaging for Automated Damage Detection (자동화 손상 검색을 위한 비접촉식 레이저 초음파 영상화)

  • Park, Byeong-Jin;An, Yun-Kyu;Sohn, Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.40-43
    • /
    • 2011
  • 최근, 레이저 초음파 영상화 기법은 구조물의 비접촉식 손상 진단을 위해 널리 연구되고 있다. 초음파 영상화 기법의 가장 큰 장점은 비접촉식으로 구조물의 손상을 진단할 수 있고, 가진 및 측정 지점을 자유로이 이동할 수 있다는 점이다. 따라서 이는 고온이나 동적상태의 구조물에 적용이 가능하며, 시간과 공간상의 충분한 데이터를 획득할 수 있으므로 역문제 (Inverse problem)를 해결할 필요 없이 완전한 초음파의 전파 형상을 얻을 수 있다. 지난 연구들에서는 충분한 가진력 혹은 측정 민감도를 확보하기 위해 가진 레이저와 부착형 센서의 조합이나 부착형 가진 트렌스듀서와 센싱 레이저의 조합으로 초음파 영상을 획득하고자 하였다. 하지만 이들 조합은 가진 혹은 측정 지점이 구조물에 부착되어 있어 완전한 비접촉식 기법을 구현하지 못하였다. 이를 극복하고자 레이저와 EMAT 센서 등의 조합이 시도되어 왔으나, 이 또한 EMAT 센서의 적용 거리에 따른 한계점을 지니고 있다. 본 연구에서는 가진 레이저 (Nd:Yag)의 스캐닝을 통해 다양한 가진 점에서 발생된 초음파가 탄성체 구조물을 통해 전파되고, 이를 센싱 레이저 (Laser Doppler Vibrometer)를 이용하여 측정함으로써 비접촉식 초음파 영상화를 구현하였다. 나아가, 정상파 필터(Standing-wave filter)를 이용하여 구현된 초음파 영상으로부터 손상 영향만 검출해 내는 기법을 개발했다. 개발된 기법은 복합재 시편의 층간박리 (Delamination) 진단을 통해 검증하였다.

  • PDF

An Analysis of Vibration Characteristics in Ultrasonic Object Levitation Transport System (초음파를 이용한 물체 부상 이송시스템의 진동 특성 해석)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.415-418
    • /
    • 2005
  • In the semiconductor and optical industry, a new transport system which can replace the conventional transport systems is required. The transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required fur reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system fur levitating object are proposed. The 3D vibration profiles of the beam are measured by Laser scanning Vibrometer fur verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured for evaluating the performance.

  • PDF

Flexural Beam Design of Ultrasonic Object Levitation Slide System (초음파 물체부상 이송시스템의 Flexural Beam 설계)

  • Jeong, Sang-Hwa;Kim, Hyun-Uk;Choi, Suk-Bong;Kim, Kwang-Ho;Park, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.959-962
    • /
    • 2005
  • In the semiconductor and optical industry. a new transport system which can replace the conventional transport system is required. The Transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required for reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system for levitation object are proposed. The 3D vibration profiles of the beam are measured by Laser Scanning Vibrometer for verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured fore evaluating the performance.

  • PDF

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.