• Title/Summary/Keyword: Laser Vibration Measurement

Search Result 130, Processing Time 0.028 seconds

EVALUATION OF VOLUME VELOCITY OF A LOUDSPEAKER IN A CHAMBER

  • Lee, J.S.;Ih, J.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.770-774
    • /
    • 1994
  • The volume of an acoustic source is important in determining various acoustic parameters. One of the suggested techniques is the internal pressure method incorporating a loudspeaker attached to a chamber wall and a microphone inserted into the cavity. Although the method is easy to handle with a very simple measurement setup, the coupling effects between the dynamic system of the loudspeaker and acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field should be considered for precise result. In this study, higher order modes due to the discontinuities of loudspeaker and microphone boundaries are included and the electro-acoustic coupling effects are compensated for by using the results of two cylinders with different lengths. The volume velocity of a loudspeaker thus obtained agrees very with that measured by laser sensor.

  • PDF

Development of Leak and Vibration Monitoring System for High Pressure Steam Pipe by Using a Camera (카메라를 이용한 고압 증기 배관 누설/진동 감시시스템 개발)

  • Jeon, Hyeong-Seop;Suh, Jang-Su;Chae, Gyung-Sun;Son, Ki-Sung;Kim, Se-Oh;Lee, Nam-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.496-503
    • /
    • 2016
  • Leakages at plant structures of power and petrochemistry plants have led to casualties and economic losses. These leakages are caused by fatigue failure of pipelines and their wall thickness. Vibration measurement methods for plant pipelines mainly use acceleration and laser sensors. These sensors are difficult to install and operate and thus lead to an increase in operational cost especially for wide area surveillance. Recently, measurements of leak and vibration displacements using cameras have attracted the interest of many researchers. This method has advantages such as simple installation, long distance monitoring, and wide area surveillance. Therefore, in this paper, we have developed a system that can measure the leakage and vibrational displacement by using a camera. Furthermore, the developed system was verified with experimental data.

Development of High Resolution Laser Doppler Vibrometer (고 분해능 레이저 도플러 진동계의 개발)

  • Kim, Seong-Hun;Go, Jin-Hwan;Kim, Ho-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • A high resolution Laser Doppler Vibrometer(LDV) developed using electronic fringe counting method. The fringe pattern signal obtained via analog signal processing is divided into two. One was converted to a TTL signal with a ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration. The other was directed to the A/D converter to get a high resolution of about $\lambda/320$ with the phase comparison method. The data obtained with the A/D converter was used in the displacement calculation and the result was displayed on a LCD pane. In this study, a Laser Doppler Vibrometer with measurement range of $0.32\mum~129\mum$ and displacement resolution of 2nm, about $\lambda/320$ , was developed. And this LDV can be used to measure the dynamic of microsize devices such as MEMS(Micro Electro-Mechanical Systems) and to diagnose high capacity electric equipment such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

A Study on the method for the measurement of vibrating amplitude and frequency with Laser Doppler Vibrometer (레이저 도플러 진동계를 이용한 진동변위와 주파수 측정방법 연구)

  • Kim, Seong-Hoon;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1824-1827
    • /
    • 1998
  • A Laser Doppler Vibrometer(LDV) was developed using He-Ne laser as a light source. The heterodyne method was employed and its output signal was digitally processed with a $\mu$-processor and the result was displayed with LCD. The frequency shifted object beam(40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was recombined with reference beam at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. With the same method, the fringe pattern signal of the moving surface is obtained. This fringe pattern signal is converted to TTL signal with ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration, which is displayed with LCD. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

A Study on the Fluid Flew with Ultrasonic Forcing by PIV Measurement (초음파가 가진된 유체유동의 PIV계측에 의한 연구)

  • 주은선;이영호;나우정;정진도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1281-1290
    • /
    • 2001
  • A study on the fluid flow with ultrasonic forcing is carried out to obtain data for the turbulence enhancement. A large water tank is made of the transparent acrylic plates and a horizontal flow field is given by setting two acrylic tubes to face mutually on a horizontal line. A 2-dimensional PlV system which is composed of a continuous-output 4W Argon-ion laser, a high-speed video camera, a PC based by an image grabber and a high resolution monitor is used to investigate characteristics of the complex turbulence flow field. And a 2MHz ultrasonic transducer is used fur ultrasonic vibration forcing. Some experiments are carried out at Reynolds numbers of 2,000 and 4,000 and at 7 angles of ultrasonic incidence. In results, the flew velocity vector distribution, kinetic energy and turbulence intensity in both cases of with and without ultrasonic forcing are examined, compared and discussed by using PIV measurement. It is clarified that the ultrasonic forcing into flow field is valid to obtain the turbulence enhancement.

  • PDF

A noble RBC aggregometer with vibration-induced disaggregation mechanism

  • Shin S.;Jang J.H.;Park M.S.;Ku Y.H.;Suh J.S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2005
  • The aggregation of red blood cells (RBCs) is a major determinant of blood flow resistance passing through various veins. Available techniques for measuring RBC aggregation often require pretreating and washing after each measurement, which is not optimal for day-to-day clinical use. A laser reflection technique has been combined with a vibration-aided disaggregation mechanism, which shows significant advances in aggregometer design, operation and data analysis. The essential features of this design are in its simplicity and a disposable element that is in contact with the blood sample. Using extremely small quantities of blood, the RBCs subjected to vibrations can be quickly and completely disaggregated. This is followed by measuring the backscattered light intensity. The measurements with the present sensor were compared with those of a commercial aggregometer and a strong correlation was found between them. The newly-developed optical aggregometer can measure the RBC aggregability difference between young and old cell suspension with ease and accuracy.

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.