• Title/Summary/Keyword: Laser Scattering

Search Result 407, Processing Time 0.037 seconds

A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering (UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구)

  • Jin, S.H.;Heo, H.S.;Kim, G.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Lock-in frequency improvement of ring laser gyro using a low - scattering mirror (저산란 반사경을 이용한 링레이저 자이로의 주파수 잠긴 개선)

  • Jo, Min-Sik;Shim, Kyu-Min;Kwon, Yong-Yool;Chung, Tae-Ho;Oh, Moon-Su;Lee, Soo-Sang;Cho, Hyun-Ju;Son, Seong-Hyun;Moon, Gun;Lee, Jae-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.336-339
    • /
    • 2002
  • For the improvement of the lock-in frequency of a ring laser gyro, a low-scattering mirror was employed in the laser resonator. A super-polishing technique produced fine mirror substrates of less than 1-A-rms-roughness. The mirror coating using an ionbeam sputtering technique reduced the scattering loss to less than 30 ppm. As a result of the mirror scattering enhancement of the ring laser, the lock-in frequency of the gyro was improved up to about 0.1 deg/sec.

Measurement of the degree of second order temporal coherence $g_s^{(2)}({\tau})$ of a laser speckle backscattered from a rotating randomly rough metal surface (회전하는 거친금속표면에서 후방산란되어 형성된 레이저 스펙클의 세기의 시간상관함수 $g_s^{(2)}({\tau})$의 측정)

  • 안성준;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.161-166
    • /
    • 1992
  • The s-polarized laser beam is incident with an angle ~$-30^{\circ}$ to a uniformly rotating rough metal surface and the degree of second order temporal coherence $g_{s}^{(2)}(\tau)$ of the backscattered wave, which has the same polarization with the incident laser beam, is measured. The contribution of shot noise involved in the measurement of $g_{s}^{(2)}(0)$ is subtracted from the photoelectric signal to obtain the accurate value of $g_{s}^{(2)}(0)$.At each scattering angle$\theta_{s}$에서$g_{s}^{(2)}(\tau)$ is almost consistent with the function {1+exp($-\tau^2/\tau_0^2$)}, which is the same result with the case of the laser speckle formed by scattering on the rotating ground glass suface. In addition, a peak in the angular distribution of $\tau_0$ is observed with the maximum at$\theta_s=34^{\circ}$.It is found that the rough metallic scattering with multiple scattering over than 10% has the same function of the degree of second order temporal coherence with that of the ground glass surface scattering where the multiple scattering is ignorably small.

  • PDF

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

Output Characteristics of KrF Excimer Laser Pumped $H_2/D_2$ Raman Laser (KrF 엑시머 레이저 펌핑 $H_2/D_2$ 라만레이저의 출력 특성)

  • 이용우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, we have investigated the output characteristics of the Stokes Raman laser in hydrogen, deuterium, and their mixed gases as a function of the incident pump energy and gas pressure using KrF excimer laser as pumping source for generating the differential absorption lidar (DIAL) wavelengths suitable in measuring the ozone concentration of the troposphere. The optimization results of compact excimer-Raman laser transmitter in DIAL system for the tropospheric ozone sounding at the 292 nm/319 m and 292 nm/313 nm wavelength pairs are presented. for the ozone sounding in the 4-12 km range, it has been demonstrated that the design of transmitter for DIAL lidar may be significantly simplified by the use of 292 nm/319 nm wavelength pair. The investigations of Raman scattering in the mixture of hydrogen and deuterium gases have shown that such mixture may be efficiently used for developing the multi- wavelength light sources for DIAL systems.

  • PDF

Fabrication of PDMS microlens for optical detection (광학적 검출을 위한 PDMS 마이크로렌즈의 제작)

  • Park, Se-Wan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • In a detection system based on laser light scattering, focusing an excitation laser beam into a focal point of a channel in a microfluidic chip is important for obtaining the highest excitation intensity, and consequently for obtaining a laser light scattering signal using a photodetector with a high efficiency. In this paper, we present a polydimethylsiloxane (PDMS) microfluidic chip consisting of an integrated PDMS microlens for cell detection based on laser light scattering. We fabricated PDMS microlens for optical detection system by simply putting down on PDMS chips. The PDMS microlens was fabricated by photoresist reflow and replica molding. This fabrication technique is simple and has an excellent property in terms of the microlens and a high-dimensional accuracy. The PDMS microlens integrated on the PDMS microfluidic chip has been verified to improve the laser intensity, and accordingly, the signal-to-noise ratio and sensitivity of laser light scattering detection for red blood cells(RBCs)

A Study on Spectra of Laser Induced Flourescence in Phantom of N-propyl-N,N-dimethylethanolamine (N-propyl-N,N-dimethylethanolamine의 Phantom에서 Laser Induced Fluorescence의 스펙트라에 관한 연구)

  • Kim, Ki-Jun;Lee, Joo-Ho;Lee, Joo-Youb;Sung, Wan-Mo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.330-338
    • /
    • 2015
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering of N-propyl-N,N-dimethylethanolamine, fluorescence agent and absorption agent were interpreted for the scattered fluorescence intensity and wavelength. They have been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF) and flocculation. The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process. The values of scattering coefficient ${\mu}_s$ are large by means of the increasing scattering of scatterer, The values have been found that the slope decays exponentially as a function of concentration from laser source to detector by our experimental result. It may also aid in designing the best model for oil chemistry, bio-pharmaceutical, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.

Mode conversion and scattering analysis of guided waves at delaminations in laminated composite beams

  • Soleimanpour, Reza;Ng, Ching-Tai
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.213-236
    • /
    • 2015
  • The paper presents an investigation into the mode conversion and scattering characteristics of guided waves at delaminations in laminated composite beams. A three-dimensional (3D) finite element (FE) model, which is experimentally verified using data measured by 3D scanning laser vibrometer, is used in the investigation. The study consists of two parts. The first part investigates the excitability of the fundamental anti-symmetric mode ($A_0$) of guided wave in laminated composite beams. It is found that there are some unique phenomena, which do not exist for guided waves in plate structures, make the analysis become more complicated. The phenomena are observed in numerical study using 3D FE simulations. In the second part, several delaminated composite beams are studied numerically to investigate the mode conversion and scattering characteristics of the $A_0$ guided wave at delaminations. Different sizes, locations and through-thickness locations of the delaminations are investigated in detail. The mode conversion and scattering phenomena of guided waves at the delaminations are studied by calculating reflection and transmission coefficients. The results show that the sizes, locations and through-thickness locations of the delaminations have significant effects on the scattering characteristics of guided waves at the delaminations. The results of this research would provide better understanding of guided waves propagation and scattering at the delaminations in the laminated composite beams, and improve the performance of guided wave damage detection methods.

Laser Thomson Scattering Measurements and Modelling on the Electron Behavior in a Magnetic Neutral Loop Discharge Plasma

  • Sung, Youl-Moon;Kim, Hee-Je;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.107-112
    • /
    • 2001
  • Laser Thomson scattering measurements of electrom temperature and density in a neutral loop discharge (NLD) plasma were performed in order to reveal the electron behavior around the neutral loop (NL). The experimental results were examined by using a simulation model that included effects of a three dimensional electromagnetic field with spatial decay of the RF electric field, and the limitation of the spatial extent of the electron motion and collision effect. From the experiments and modeling of the electron behavior, it was found that NLD plasma posses the electron temeprature $T_{e}$ and density ne peaks around the NL is essential for the formation of plasma. Also, the optimum condition of plasma production could be simply estimated by the calculation of $U_{av}$ and $F_{0}$././.

  • PDF