• Title/Summary/Keyword: Laser Propulsion

Search Result 97, Processing Time 0.026 seconds

Laser Propulsion in Free Flight

  • Kawahara, Takehiro;Watanabe, Keiko;Ogawa, Toshihiro;Sasoh, Akihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.325-326
    • /
    • 2004
  • Experiment of laser propulsion in free flight has never been conducted. At Institute of Fluid Science (IFS), Tohoku University, propulsive impulse generation by focusing on a rest projectile was demonstrated. Based on the ideas obtained from this experiment, experiment of laser propulsion of a projectile in flight by focusing $CO_2$ laser beam is being prepared for. The objective velocity increment in experiment is about 50 m/s.

  • PDF

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Numerical Simulation and Experiment on Supersonic Air-Breathing Laser-Spike Propulsion Vehicle (초음속 공기 흡입식 레이저 스파이크 추진 비행체에 관한 수치 해석 및 실험적 연구)

  • Kim Sukyum;Kim Young-Taek;Jeong In-Seock
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.57-61
    • /
    • 2004
  • As a kind of application of laser propulsion, air-breathing laser-spike engine can be designed for aircraft in atmospheric flight. Laser-spike engine generates thrust using the blast wave induced by laser energy instead of combustion process. And this engine use air as propellant, therefore, it need no on board propellant. For experimental study, supersonic wind tunnel and spark generator were used. Flow visualization was performed using 2-dimensional laser-spike engine model And numerical simulation of the corresponding case for the experiment was done and compared with experimental case. Detailed results will be discussed at the presentation.

  • PDF

Performance of Laser-driven In-Tube Accelerator (레이저 구동 관내 가속장치 (LITA)의 성능에 대한 연구)

  • 김수겸;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.39-42
    • /
    • 2003
  • We studied the vertical launch performance of the Laser-driven In-Tube Accelerator (LITA). This device is primarily characterized by accelerating a projectile in a tube. Owing to the confinement effect, the thrust performance is enhanced. The driver gas can be specified and its pressure be turned so that the impulse performance is optimized. In the experiments, a 3.0-gram projectile was vertically launched. The effects of the projectile exit condition, the laser beam incident direction and the driver gas species were experimentally studied.

  • PDF

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

Inductively coupled plasma application in CW Laser Propulsion

  • Takayoshi Inoue;Kohei Kojima;Susumu Uehara;Kim, iya-Komurasaki;Yoshihiro Arakawa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.251-256
    • /
    • 2004
  • A concept in which laser-sustained plasmas (LSPs) are combined with inductively coupled plasmas (ICPs) is proposed. The concept is aiming at extensions of operative conditions of a CW laser thruster due to the fact that the ICP has some characteristics which are in contrast to those of LSPs. An estimation confirmed that the concept would effectively work. And a fundamental experiment was conducted. The results showed that the radio frequency magnetic field induced by a alternate current of 13.56 MHz coupled inductively with LSPs, resulting in the enlargement of the plasma region and the attainment of the enthalpy. It is expected that some improvements will enable to transfer the RF power to the work gas more effectively and to demonstrate the synergy effect between the LSPs and the ICPs.

  • PDF

Research on Applicability of Laser Ablation Propulsion to Space Debris Removal by Simulations (시뮬레이션을 통한 레이저 융삭 추진의 우주 쓰레기 제거 응용 가능성 연구)

  • Yoo, Seong-Moon;Lee, Seung-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.169-176
    • /
    • 2022
  • Laser ablation propulsion(LAP) is the method to create impulse by laser ablation. It can be used to deorbit the space debris(SD), as its long-range property and versatility on any material. In this paper, we find out several requirements of the LAP system(LAPS) to deorbit the SD by simple numerical calculations of the SD orbit and laser beam flux. As a result, minimum operable altitude angle turned out to be a crucial variable to the LAPS. Moreover, if minimum operable altitude angle is 10°, and if the minimum distance between the LAPS and the SD is below 450 km, 1 m/s2 is sufficient to deorbit the SD by once. With 18 kJ/3 ns pulsed laser and cube shaped 100 kg SD, 1 m/s2 acceleration can be achieved by increasing the pulse repetition rate over 34~53 Hz, depending on the size of the SD. This capability could compare with the conceptual design of the Japan Establishment for a Power-laser Community Harvest(J-EPoCH) facility, which include 8 kJ, 5 PW@100 Hz laser.

Small Thruster Development Based on Pulse Energy (펄스 에너지 기반의 소형 추력 장치 개발)

  • Choi, Soo-Jin;Gojani, Ardian B.;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.365-368
    • /
    • 2009
  • A new concept of a small thruster for altitude control of a micro/nano class satellite is developed, which utilizes the pulsed laser energy. As the laser-based thruster does not require burning of any fuel, it gives promise of small satellite design criteria, namely light weight and cost effectiveness. In this paper, we develop gel-type material for generating strong plasma plume for enhancing thrust for propulsion. Moreover, we quantify the level of thrust via the momentum coupling coefficient measured by the pendulum system. We discover that the driving force is significantly improved via the gel-typed propellant for laser ablation.

  • PDF

고에너지원을 이용한 폭발 현상 모델링

  • Lee, Gyeong-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.349-352
    • /
    • 2007
  • In this paper, we describe the modeling of ablation based laser applications for innovative use in the military In the laser ignition system, a metal confinement is ablated with the high intensity pulsed energy, triggering a thermal ignition of the confined high explosives. The constitutive equations for the laser source, deformation of metals, and explosion of energetic materials are described.

  • PDF