• 제목/요약/키워드: Laser Plasma

검색결과 574건 처리시간 0.024초

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

레이저 테일러드 블랭크 용접 품질 모니터링 시스템 개발 (Development of laser tailored blank weld quality monitoring system)

  • 박현성;이세헌
    • 한국레이저가공학회지
    • /
    • 제3권2호
    • /
    • pp.53-61
    • /
    • 2000
  • On the laser weld production line, a slight alteration of the welding condition produces many defects. The defects are monitored in real time, in order to prevent continuous occurrence of defects, reduce the loss of material, and guarantee good quality. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in CO$_2$ laser welding. For high speed CO$_2$ laser welding, laser tailored welded blanks for example, on-line weld quality monitoring system was developed by using fuzzy multi-feature pattern recognition. Weld qualities were classified optimal heat input, a little low heat input, low heat input, and focus misalignment, and final weld quality were classified good and bad.

  • PDF

30GW급 대출력 글라스레이저의 개발연구 (A study on development of 30GW class high power glass laser system)

  • 강형부
    • 전기의세계
    • /
    • 제31권5호
    • /
    • pp.383-390
    • /
    • 1982
  • The high power glass laser system was designed and constracted which consisted of a TEM$\_$00/ mode Q-switching oscillator, a pulse shaping, system, two-stage pre-amplifiers, five-stage main amplifiers, a Faraday rotator, and a uni-guide slit. The laser output of 3OGW with the pulsewidth of 2 nsec was obtained by performing the amplifiing experiment in this system. When the laser light with the pulsewidth of 10 nsec was amplified, the large factor of amplification was obtained in the beginning of pulse, but the factor of amplification decreased gradually in the later part of pulse. Therefore, the laser light which has short pulsewidth of-2nsec must be amplified in order to obtain the larger factor of amplification. When the laser beam from the high power glass laser system was irradiated to plasma, the reflected laser light from plasma which occured inevitably could be attenuated to the order of 10$\^$-4/ by using the Faraday rotator and the uni-guide slit.

  • PDF

레이저플라즈마의 제특성의 계측 (Measurement of properties of laser-produced plasmas)

  • 강형부
    • 전기의세계
    • /
    • 제29권2호
    • /
    • pp.118-128
    • /
    • 1980
  • The properties of plasmas produced by high power glass laser were investigated with various methods of diagnostics. Electron temperature was estimated by measurement of soft X-ray, and ion temperature was estimated by measurement of the time-of-flight of ion. The measurement of incident and reflected laser light, and Schlieren and shadowgragh methods were also used. No influence of laser pulse duration on the temperature was observed in the case of durations 2, 4 and 10 nsecs. The effective heating of plasma occurred in about 2 nsec of beginning of incident laser pulse. The experimental results for fast rising laser pulse were discussed and the influence of resetime of laser pulse on the heating of plasma was described. Neutrons produced by irradiating laser beam to solid deuterium target were detected.

  • PDF

Tandem laser-induced breakdown spectroscopy laser-ablation inductively-coupled plasma mass spectrometry analysis of high-purity alumina powder

  • Lee, Yonghoon;Kim, Hyang
    • 분석과학
    • /
    • 제32권4호
    • /
    • pp.121-130
    • /
    • 2019
  • Alumina is one of the most important ceramic materials because of its useful physical and chemical properties. Recently, high-purity alumina has been used in various industrial fields. This leads to increasing demand for reliable elemental analysis of impurities in alumina samples. However, the chemical inertness of alumina makes the sample preparation for conventional elemental analysis a tremendously difficult task. Herein, we demonstrated the feasibility of laser ablation for effective sampling of alumina powder. Laser ablation performs sampling rapidly without any chemical reagents and also allows simultaneous optical emission spectroscopy and mass spectrometry analyses. For six alumina samples including certified reference materials and commercial products, laser-induced breakdown spectroscopy (LIBS) and laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) analyses were performed simultaneously based on a common laser ablation sampling. LIBS was found to be useful to quantify alkali and alkaline earth metals with limits-of-detection (LODs) around 1 ppm. LA-ICP-MS could quantify transition metals such as Ti, Cu, Zn, and Zr with LODs in the range from a few tens to hundreds ppb.

고에너지 열원에 따른 스테인리스강의 제살용접특성 비교 (Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source)

  • 김종도;이창제;송무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1076-1082
    • /
    • 2012
  • 오늘날 LNG선의 용접에는 아크와 플라즈마가 사용되고 있으나 아크용접은 에너지 밀도가 낮아 후판에 대해서 다층용접이 불가피하며, 고밀도 열원인 레이저 용접에 비하여 용접속도에도 한계가 있다. 따라서 후판 용접시 다층용접에 의한 용접부의 조직적 결함이나 과대 입열로 형성된 열영향부 등의 문제를 해소하기 위하여 키홀용접에 의한 원패스 용접이 고려되고 있다. 키홀용접이 가능한 열원은 레이저, 전자빔, 플라즈마가 있으며, 현재 플라즈마 용접이 아크를 대체하여 LNG선 카고탱크의 멤브레인 용접에 적용되고 있다. 최근에는 멤브레인의 용접에 레이저를 적용하기 위한 많은 연구가 진행 중에 있다. 본 연구에서는 LNG선용 스테인리스강에 대한 파이버 레이저 및 플라즈마 아크 용접의 용접성, 기계적 성질 및 미세조직을 비교하였다. 그 결과 레이저 용접이 더 빠른 용접속도에서 좁은 용접부와 열영향부를 얻을 수 있었다. 따라서 LNG선의 용접에서는 파이버 레이저가 보다 우수한 용접법이라는 것을 알 수 있었다.

펄스형 $CO_2$ 레이저를 이용한 기중 침 대 침 전극간의 유도방전 특성 (The induced discharge characteristics in atmosphere adopting a pulsed $CO_2$ laser)

  • 정용호;최진영;이유수;정현주;송건주;김희제
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2002
  • The technique of induced discharge by a pulsed CO2 laser is being applied to control electrical discharge path, material processing, triggered lightning for protecting the power equipments. In this paper, we have investigated about the characteristics of the induced discharge at atmospheric conditions by using a plasma channel, which is produced when a pulsed CO2 laser radiation is focused by a focusing mirror as a trigger source. A plasma channel produced by laser radiation has an effect on decreasing the threshold voltage and inducing the discharge in both needle electrodes. We have confirmed a delay time between a produced plasma channel and an electrical discharge after laser radiation. We provided the decreased voltage lower than the natural discharge voltage between electrode type of needles and was induced the discharge by forming a plasma channel between them. In this research we could understand the time delay of induced discharge by laser radiation, and the characteristics of the discharge cause by the decrease in the threshold voltage, and the polarity effect by changes of plasma channel positions between two electrodes.

  • PDF

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.

펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성 (Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma)

  • 김종일
    • 한국전기전자재료학회논문지
    • /
    • 제16권7호
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.