• 제목/요약/키워드: Laser Micromachining

검색결과 124건 처리시간 0.022초

대기중 나노초 펄스레이저 어블레이션의 수치계산 (Numerical simlation of nanosecond pulsed laser ablation in air)

  • 오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성 (Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications)

  • 이현기;한승오;박정호;이천
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

변형률 속도 효과를 고려한 355nm UV 레이저 다중 펄스 미세가공의 전산해석에 관한 연구 (A Study on the Computational Analysis of 355nm UV Laser Multiple-Pulsed Micro Machining Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;남기중;류광현;신석훈;신보성
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.29-33
    • /
    • 2010
  • UV laser micromachining of metallic materials has been used in microelectronic and other industries. This paper shows on experimental investigation of micromachining of copper using a 355nm UV laser with 50ns pulse duration. A finite element model with high strain rate effect is especially suggested to investigate the phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. In order to consider the strain rate effect, Cowper-Symonds model was used. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, a commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computational simulation of the UV laser micro machining behavior for thin copper material. From these computational results, depth of the dent (from one to six pulsed) were observed and compared with previous experimental results. This will help us to understand interaction between UV laser beam and material.

마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공 (Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices)

  • 오광환;이민규;정성호
    • 한국광학회지
    • /
    • 제17권5호
    • /
    • pp.437-446
    • /
    • 2006
  • 본 연구에서는 레이저유도 에칭기술을 이용한 스테인레스강의 고세장비 미세채널 제조에 대하여 기술한다. 공정 변수 최적화와 반복에칭을 통하여 높은 세장비를 갖는 미세채널을 제조하였으며 제조된 미세채널은 레이저출력과 에칭용액의 농도를 적절하게 조절함으로써 U 형상과 V 형상 사이의 단면 구조를 가지며 열변형이 없는 우수한 표면 형상을 보였다. 채널과 채널 사이의 간격은 $150{\mu}m$ 또는 그 이하이며 $15{\sim}50{\mu}m$ 범위의 폭을 갖는 10 이상의 고세장비 미세채널이 제조되었다. 레이저출력, 레이저초점의 이송속도, 에칭용액의 농도 등의 공정 변수들이 제조된 채널의 폭, 깊이 그리고 단면 형상에 미치는 영향에 대하여 자세히 보고한다.

다구찌 방법을 이용한 레이저 리소그라피 미세패턴 가공조건의 최적화 (Optimization of Laser Lithography Micropatterning Technique based on Taguchi Method)

  • 백남국;김대은
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.59-64
    • /
    • 2002
  • Laser lithography technique is useful for fabricating micro-patterns of silicon wafers. In this work, the laser lithography micromachining technique is optimized based on Taguchi method. Sensitivity analysis was performed using laser scanning speed, laser power level, developing time and mixture ratio between developer and Di-water as the parameters. The results show that for the photoresist used in this work, 70${\mu}m$/s scan speed, 50㎽ laser power, 60sec. developing time and 6: 1 mixture ratio gives the best result. This work shows the effectiveness of laser lithography technique in fabricating patterns with a flew micrometer in width.

레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조 (Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures)

  • 신용산;손승우;정성호
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.

펨토초 레이저 미세가공을 위한 3차원 형상 복원 시스템의 최적설계 및 구현 (Optimal Design and Implementation of 3D Shape Restoration System for Femto-second Laser Micromachining)

  • 박정홍;이지홍;고윤호;박영우
    • 전자공학회논문지SC
    • /
    • 제43권6호
    • /
    • pp.16-26
    • /
    • 2006
  • 본 논문에서는 평판형 디스플레이 장치의 필수 구성품인 투명한 ITO(Indium-Tin-Oxide) 유리를 가공하기 위한 펨토초(Femto-second) 레이저 미세 가공의 효율을 극대화하기 위해 가공 대상체의 정보를 추출하는 시스템을 제안한다. 제안한 시스템은 레이저 스캐닝 시스템을 활용하여 펨토초 레이저빔의 초점 거리 오차와 각도 오차를 사전에 계측하고 3차원으로 형상을 복원한다. 본 시스템은 라인 스캔 레이저, 고해상도 카메라, 리니어 모션 가이드(Linear Motion Guide), 시스템 제어부로 구성되어있다. 또한 본 시스템의 모델링을 통한 카메라와 레이저의 위치와 측정 결과와의 관계를 나타낼 수 있는 민감도 지수를 정의하고, 이를 활용하여 더욱더 정확한 측정이 가능한 시스템을 설계할 수 있었다. 가공 대상체인 ITO 유리의 높이와 표면 형상을 측정하고 3차원으로 형상을 복원하여 주사 탐침 현미경(SPM)으로 얻은 결과와 비교하여 본 시스템의 성능을 검증하였다.

DPSS UV 레이저를 이용한 블라인드 비아 홀 가공 (Blind Via Hole Drilling Using DPSS UV laser)

  • 김재구;장원석;신보성;장정원;황경현
    • 한국레이저가공학회지
    • /
    • 제6권1호
    • /
    • pp.9-16
    • /
    • 2003
  • Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of blind hole in Cu/PI/Cu substrate with the DPSS UV laser and the scanning device is investigated by the experimental methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the Archimedes spiral path for the blind hole with different energy densities to ablate the different material. Finally, the blind via hole of diameter 100$\mu\textrm{m}$ and 50$\mu\textrm{m}$ was drilled.

  • PDF

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

액체 보조 방식의 Excimer 레이저 폴리머 미세가공 (Excimer Laser Micromachining of Polymers Assisted by Liquid)

  • 장덕석;김동식
    • 한국레이저가공학회지
    • /
    • 제10권1호
    • /
    • pp.19-27
    • /
    • 2007
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhancement and particle removal from the surface. Although the ablation enhancement by liquid is already known for semiconductor and metal, the phenomena of polymer ablation have not been studied. In this work, tile liquid-assisted excimer laser ablation process is examined for polymer materials, such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) with emphasis on ablation enhancement and surface topography. In the case of PET and PMMA, the effect of liquid is analyzed both for thin water film and bulk water. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface topography is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF