• Title/Summary/Keyword: Laser Fluorescence

Search Result 415, Processing Time 0.028 seconds

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF

Two-dimensional $O_2$ and OH Density Measurement Using Tunable KrF Excimer Laser Light a Combustion Bomb via Planar Laser Induced Predissociative Fluorescence and Laser Rayleigh Scattering (평면 선해리 레이저유도 형광법과 레이래이 분산법을 이용한 연소실내의 OH 및 $O_2$의 2차원적 농도측정)

  • 김경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.91-99
    • /
    • 1994
  • Tunable KrF Excimer Laser is used here for measuring OH and $O_2$ density distribustion in an open $H_2$/air premixed flame and in a combustion bomb. Laser Rayleigh Scattering(LRS) and Planar Laser Induced Predissociative Fluorescence(PLIPF) methods are used to obtain two-dimensional images of total and specific densities. Laser Excitation wavelengths are calibrated via flame images and combustion bomb images show good qualitative a greement with theoretical calculation. Furthermore images in a combustion bomb can be developed to study real Spark-Ignition engine combustions. Our experimental images show that there are no more collisional quenching problem at high pressure environment(including atmospheric pressure) using predissociative fluorescence technique. Further development to obtain two-dimensional temperature dustribution is ready to use eventhough it is not reported in this paper.

  • PDF

Measurement of Fuel Vapor Concentration by Excimer Fluorescence Method (Excimer 형광법을 이용한 연료증기 농도측정법에 대한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • Laser induced-exciplex-fluorescence (EXCIPLEX) proposed by Melton is used to visualize fuel vapor in spray combustion. However, in the EXCIPLEX method based on TMPD/naphthalene system, the TMPD : naphthalene ratio is strictly restricted to 1 : 9. In addition, fluorescence intensity due to the vapor phase is extremely weak. To overcome these drawbacks, we propose a new laser-induced-excimer fluorescence (EXCIMER) method to visualize the liquid and vapor phases simultaneously. The spatial distributions of liquid and vapor in fuel spray suspended by ultrasonic waves are compared using the EXCIPLEX and EXCIMER methods. The correlation between fuel vapor concentration and fluorescence intensity is experimentally investigated by measuring the fluorescence intensity of saturated vapor formed over liquid fuel at a controlled temperature. These experimental results indicate that the EXCIMER method is effective for evaluating fuel vapor visualization in spray combustion. Furthermore, the quantitative distribution of fuel vapor concentration can be correctly estimated by the EXCIMER method.

Detection of proximal caries using quantitative light-induced fluorescence-digital and laser fluorescence: a comparative study

  • Yoon, Hyung-In;Yoo, Min-Jeong;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. MATERIALS AND METHODS. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (${\Delta}F$), and DIAGNOdent peak readings were compared and statistically analyzed. RESULTS. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. CONCLUSION. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.

Development of a Real-time Medical Imaging System Combined with Laser Speckle Contrast Imaging and Fluorescence Imaging (형광과 레이저 스펙클 대조도 이미징을 결합한 실시간 의료영상 시스템 개발)

  • Shim, Min Jae;Kim, Yikeun;Ko, Taek Yong;Choi, Jin Hyuk;Ahn, Yeh-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.116-124
    • /
    • 2021
  • It is important to differentiate between the target tissue (or organ) and the rest of the tissue before incision during surgery. And when it is necessary to preserve the differentiated tissues, the blood vessels connected to the tissue must be preserved together. Various non-invasive medical imaging methods have been developed for this purpose. We aimed to develop a medical imaging system that can simultaneously apply fluorescence imaging using indocyanine green (ICG) and laser speckle contrast imaging (LSCI) using laser speckle patterns. We designed to collect images directed to the two cameras on a co-axial optical path and to compensate equal optical path length for two optical designs. The light source used for fluorescence and LSCI the same 785 nm wavelength. This system outputs real-time images and is designed to intuitively distinguish target tissues or blood vessels. This system outputs LSCI images up to 37 fps through parallel processing. Fluorescence for ICG and blood flow in animal models were observed throughout the experiment.

Trace Analysis of Uranium in Aqueous Samples by Laser-induced Fluorescence Spectroscopy (레이저를 이용한 용액중의 미량 우라늄 분석)

  • Jung, Kwang-Woo;Kim, Jeong-Moog;Kim, Cheol-Jung;Lee, Jong-Min
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.242-248
    • /
    • 1987
  • A sensitive, direct method for the determination of trace amounts of uranium in solution has been developed utilizing laser-induced fluorescence spectroscopy and a fluorescence enhancing reagent 'Fluran.' Standard addition technique is incorporated into the analysis to eliminate sample matrix effects. Analytical data show that a detection limit of 0.1 ppb (part per billion) uranium has been achieved and the precision of the analysis is in the range of 5% relative standard deviation. Results using the laser fluorescence method on many sets of unknown samples have been compared against corresponding values determined by other methods.

  • PDF

NO measurements in lean and soot flame using KrF laser (KrF 레이저를 이용한 희박연소화염과 매연화염에서의 NO계측)

  • 손성민;고동섭;이중재;오승묵;강건용;김종욱
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2001
  • The KrF laser was employed to study NO fluorescence in lean-bum as well as in soot-bum flames. Blue-shifted NO fluorescence was observed in both of the flames. For both of the flames, the fluorescence intensity of NO and its relative background noise signal were measured with respect to the concentration of seeded NO molecule in the flame and the laser intensity. The results were analyzed qualitatively. Also, NO concentration distribution in the lean-bum flame was qualitatively determined from the intensity of the NO fluorescence. cence.

  • PDF

Dynamic Resonance Fluorescence in a Colored Vacuum (단일 모드 공진기에서의 동역학 공명형광)

  • Hyoncheol Nha;Chough, Young-Tak;Wonho Jhe;Kyoungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.126-127
    • /
    • 2000
  • Resonance fluorescence is the manifestation of the interaction between the physical system under consideration and the vacuum-field fluctuation. The fluorescence spectrum provides such physical informations as the energy-level structure of the system, instabilities and relative populations of the energy levels, etc.. One of the typical fluorescence spectra is the Mollow triplet appearing when two-level atoms are driven by a strong coherent field in free space$^{(1)}$ . In the weak field limit, the singlet instead of the triplet is obtained with a reduced linewidth due to the squeezing of one quadrature phase of the induced atomic dipole$^{(2)}$ . On the other hand, when the atoms are put inside a cavity rather than in free space, a doublet spectrum due to the vacuum Rabi-splitting is achieved, showing clearly the coupling of atoms and the cavity in the single-quantum limit$^{(3)}$ . (omitted)

  • PDF

A Study on Spectra of Laser Induced Fluorescence in Phantom (Phantom에서 Laser Induced Fluorescence의 스펙트라에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.329-335
    • /
    • 1999
  • The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in phantom. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_a$, ${\mu}_a$, ${\mu}_t$). Experimental and Monte Carlo Simulation method for modelling light transport in tissue was applied. The experimental results using a phantom were discussed and compared with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for oil chemistry, medicine and application of medical engineering.