• Title/Summary/Keyword: Laser Fluence

Search Result 114, Processing Time 0.027 seconds

A Study on the Micro Machining in Polyurethane by Excimer Laser (엣시머 레이져를 이용한 폴리우레탄의 미세 가공에 관한 연구)

  • 김재구;이성국;윤경구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.366-370
    • /
    • 1997
  • This paper descibes a micro groove machining process on the polyurethane biopolymer by KrF excimer laser. To investigate the etch charcteristics of polyurethane biopolymer quantitatively,laser system for ablation was installed with high precison moter and then polymer ablation experiment, in which paramteters were fluence,pulse repetition rate,numbers of pulses and assist gas, was carred out. In this experiment, we found out that the value of critical energy density for ablation is 30mJ/cmsup2/ and the etching rate is more dependent on the pulse number and fluence than any other pamameter. Finally, we machined micro grooves for fiexibility as width 300.mu.m depth 100.mu.m and port for micro-devices mounting as length 100.mu.m width 300.mu.m depth .mu.m on the outer wallof polyurethane biopolymer tube which is used as medical device.

  • PDF

Temporal Evolution and Ablation Mechanism of Laser-induced Graphite Plume at 355 nm

  • 최영구;임훙선;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1501-1505
    • /
    • 1999
  • Expansion dynamics of C$^{+}$ ions ejected from 355-nm laser ablation of graphite target in vacuum has been investigated by pulsed-field time-of-flight (TOF) mass spectrometry. A strong nonlinear dependence of the amount of desorbed C$^{+}$ ions on laser fluence is interpreted by the mechanism that C$^{+}$ ions are produced directly from the graphite via conversion of the multiphoton energy into thermal energy. The temporal evolution of C$^{+}$ ions was measured by varying the delay time of the ion repelling pulse with respect to the laser irradiation, which provides significant information on the ablated plume characterization. The TOF distributions of ablated ions showed a bimodal shape and could be fitted by shifted Maxwell-Boltzmann distributions. The velocity of the fast component increases with the delay time, whereas the slow component (< 500 m/s) exhibits a constant velocity. Also studied were the effects of the laser fluence on the energetics of C$^{+}$ ions.

Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser (515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석)

  • Shin, Dongsig;Cho, Yongkwon;Sohn, Hyonkee;Suh, Jeong
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

Femtosecond laser induced photo-expansion of organic thin films

  • Chae, Sang-Min;Lee, Myeong-Su;Choe, Ji-Yeon;Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.2-120.2
    • /
    • 2015
  • We propose a novel direct writing technique with a femtosecond laser enabling selective modification of not only the morphology of conducting polymer thin films but also the orientation and alignment of the polymer crystal. Surface relief gratings resulting from photoexpansion on P3HT:PCBM and PEDOT:PSS thin films were fabricated by femtosecond laser direct writing. The photoexpansion was induced at laser fluence below the ablation threshold of the thin film. The morphology (size and shape) of photoexpansion could be quantitatively controlled by laser writing parameters such as focused beam size, writing speed, and laser fluence. GIWAX results showed that face-on P3HT crystals were largely increased in the photoexpansion in comparison with pristine region of the thin film. In addition, the face-on P3HTs in the photoexpansion were aligned with their orientation along the polarization of the laser. The micro-RAMAN spectra confirmed that neither chemical composition change nor the polymer chain breaking was observable after femtosecond laser irradiation. We believe that this laser direct writing technique opens a new door to the fabrication of more efficient OPVs via non-contact, toxic-free approach.

  • PDF

An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System (Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구)

  • Choi, Kyung-Jin;Lee, Young-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

Ablation rate study using short pulsed laser subjected to Alumina medium (알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구)

  • Kim, Kyunghan;Park, Jinho
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.

A Study on Formation of Conductive Pattern on Polymer Using LDS (LDS를 이용한 폴리머상의 전도성 패턴 형성 연구)

  • Paik, Byoung-Man;Lee, Jae-Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.6-11
    • /
    • 2009
  • The LDS(Laser Direct Structuring) process uses thermoplastic polymers with a additive compound that serves as plating seed after the activation by laser. It can realize industry requirement such as miniaturization of electrical component, design flexibility and reduction of production steps. The purpose of this study is to introduce LDS, and to investigate the fundamental mechanism. Also the characteristics of conductive patterns were investigated with respect to laser fluence and intensity. We have used a pulsed fiber laser (wavelength : 1064nm) and copper electroless plating to fabricate conductive patterns. The result showed that laser induced metal-organic complex was caused metalization by electroless copper plating, the critical laser fluence was $1.41\;J/cm^2$ at a scan speed of 1 m/s.

  • PDF

Time-resolved transient reflective image on silicon surface after single-shot fs-laser pulse irradiation (단일 펨토초 레이저펄스를 이용한 실리콘 표면에서의 시분해 반사율 측정 연구)

  • Moon, Heh-Young;Sidhu, Mehra Singh;Lee, Hyun-Kyu;Jeoung, Sae-Chae
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • In this work, we have studied on time-resolved transient reflective image of single crystalline Si surface after single-shot fs-laser irradiation with varying the laser fluence under two different laser spot sizes. The temporal profiles of transient reflectivity changes as well as its maximum values at the early delay time were found to be strongly dependent on both the laser beam spot size and laser fluence. We have interpreted the dependence of transient reflectivity changes on the laser spot size in terms of a relaxation of the generated free carriers to the bulk silicon, which should be interacted with the plasma.

  • PDF

Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy (펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.

Nanoparticle Synthesis by Pulsed Laser Ablation of Metal Microparticle and Consolidated Sample (금속 마이크로입자 및 압밀 시편의 펄스레이저 어블레이션에 의한 나노입자 합성)

  • Kim, Dong-Sik;Jang, Deok-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1335-1341
    • /
    • 2003
  • This paper describes the process of nanoparticle synthesis by laser ablation of microparticles and consolidated sample. We have generated nanoparticles by high-power pulsed laser ablation of AI, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355nm, FWHM 6ns, fluence $0.8{\sim}2.0J/cm^2$). Microparticles of mean diameter $18{\sim}80{\mu}m$ are ablated in the ambient air. The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence, collector position and compacting pressure on the distribution of particle size is investigated. To better understand the process of laser ablation of microparticle(LAM), we investigated the Nd: YAG laser-induced breakdown of Cu microparticle using time-resolved optical shadow images. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.