• Title/Summary/Keyword: Laser Fluence

Search Result 114, Processing Time 0.029 seconds

Theoretical Analysis on the Optimum Fluence for Copper Ablation with a 515 nm Picosecond Laser (515 nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최적 에너지밀도에 대한 이론적 분석)

  • Shin, Dongsig;Cho, Yongkwon;Sohn, Hyonkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1009-1015
    • /
    • 2013
  • Ultra-short laser pulses are effective, when high requirements concerning accuracy, surface roughness and heat affected zone are demanded for surface structuring. In particular, picosecond laser systems that are suited to be operated in industrial environments are of great interest for many practical applications. This paper focused on inducing optimum process parameters for higher volume ablation rate by analyzing a relationship between crater diameter and optical spot size. In detail, the dependency of the volume ablation rate, penetration depth and threshold fluence on the pulse duration 8 ps and wavelength of 515 nm was discussed. The experimental results showed that wavelength of 515 nm resulted in less threshold fluence ($0.075J/cm^2$) on copper than IR wavelength ($0.3J/cm^2$). As a result, it was possible that optimum fluence for higher volume ablation rate was achieved with $0.28J/cm^2$.

Transition of Femtosecond Laser Ablation Mechanism for Sodalime Glass Caused by Photoinduced Defects

  • Jeoung, Sae-Chae;Choi, Jun-Rye;Park, Myung-Il;Park, Mi-Ra;Choi, Dae-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.150-155
    • /
    • 2003
  • Femtosecond laser ablation mechanism was systematically investigated on sodalime glass in ambient conditions. The ablation crater diameter was measured for varying numbers of laser pulses as for varying well as the laser fluence. The analysis of the results with a one dimensional spatial Gaussian fluence distribution reveals that the inherent ablation mechanism has been altered from a multi-photon process to a single photon excitation due to defect sites that have been accumulated by successive laser pulses. Furthermore, the transition between the two regimes was found to be a function of both the laser fluence and the number of laser shots.

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Polyimide Surface Modification using UV Laser (UV 레이저를 이용한 폴리이미드 표면 개질에 관한 연구)

  • Oh, Jae-Yong;Lee, Jung-Han;Park, Duk-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • In this paper, polyimide (PI) surface was modified by UV Laser with a low laser fluence and investigated changes of surface geometry and chemical characteristics by SEM (scanning electron microscope), X-ray diffraction (XRD), XPS (x-ray photoelectron spectroscopy) and the measurements of contact angle of water. PI surface was peeled off and modified with microstructure fabrications by photochemical ablation over the laser fluence of 50 mJ/cm2. As laser fluence increased, delamination of PI surface was occurred largely and strongly. In chemical characteristics, the O/C and N/C atomic ratios increased and contact angle decreased from $80^{\circ}$ to $40^{\circ}$.

  • PDF

Microbump formation during laser texturing of glass substrates (유리기층의 레이저 텍스쳐링에 의한 미소융기의 형성)

  • 김동식;오부국
    • Laser Solutions
    • /
    • v.4 no.3
    • /
    • pp.40-44
    • /
    • 2001
  • Microbump formation during CO$_2$ laser texturing of glass substrates is examined in this paper. Experimental results show that different bump shapes (dome-shaped, with a central dimple, and with a peripheral rim) are generated depending on the laser fluence. A theoretical model for the process is suggested based on thermoelastic behavior but limited only to the dome-shaped bump. The dimensions (maximum height and base area) of the bump shows a logarithmic dependence on laser fluence as expected from the theory. Numerical computation reveals that the effect of thermal diffusion is not negligible for relatively long laser pulses.

  • PDF

Laser-Direct Patterning for Plasma Display Panel (플라즈마 디스플레이 패널을 위한 레이저 직접 패터닝)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-102
    • /
    • 1999
  • A mixture which was made from organic gel, glass powder and ceramic powder was masklessly etched for fabrication of barrier rib of PDP(Plasma Display Panel) by focused Ar$^{+}$ laser( λ =514 nm) and Nd:YAG(λ =532, 266 nm) laser irradiation at the atmosphere. The depth of the etched grooves increases with increasing a laser fluence and decreasing a scan speed. Using second harmonic of Nd:YAG laser, the threshold laser fluence was 6.5 mJ/$\textrm{cm}^2$ for the sample of PDP barrier rib softened at 12$0^{\circ}C$. The thickness of 130 ${\mu}{\textrm}{m}$ of the sample on the glass was clearly removed without any damage on the glass substrate by fluence of 19.5 J/$\textrm{cm}^2$....

  • PDF

Partial Unilateral Lentiginosis Successfully Treated with a High-fluence 1,064-nm Q-switched Neodymium:Yttrium-aluminum-garnet Laser

  • Hong, Jun Ki;Han, Hye Sung;Shin, Sun Hye;Yoo, Kwang Ho
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.120-122
    • /
    • 2021
  • Partial unilateral lentiginosis (PUL) is an unusual pigmentary disorder characterized by numerous lentigines on the skin, with onset usually during early childhood. It is characterized by unilateral segmental distribution with sharp margins in one or more dermatomes. Conventional laser treatments result in several adverse effects, such as mottled pigmentary changes (hyper or hypopigmentation), especially in people of Asian descent. A 57-year-old man with PUL on the neck was treated with a high-fluence 1,064-nm Q-switched (QS) neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser. After 20 treatment sessions, the lesions markedly improved without adverse effects or recurrence. We suggest that high-fluence 1,064-nm QS Nd:YAG laser treatment is an effective and safe modality for PUL.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Laser Patterning of Indium Tin Oxide for Flat Panel Display (평판디스플레이를 위한 Indium Tin Oxide의 레이저 페터닝)

  • Ahn, Min-young;Lee, Kyoung-cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.340-343
    • /
    • 2000
  • ITO(Indium Tin Oxide) films for transparent electrodes of FPD(Flat Panel Display) were patterned in atmosphere using laser. A pulse type(repetition rate of 10 Hz) Q-switched Nd:YAG laser which can generate the fundamental wavelength at 1064 nm or its harmonics(532, 266 nm) was used for Patterning of the ITO film. In case of using the second harmonic(532 nm) of Nd:YAG laser, the ITO film(thickness of 20 nm) was removed clearly with a laser fluence of 5.2 J/$\textrm{cm}^2$ and a beam scan speed of 200${\mu}{\textrm}{m}$/s. But the glass substrate was damaged when the laser fluence was over 5.2 J/$\textrm{cm}^2$. We discussed the etching mechanism of the ITO film using Nd:YAG laser with observation of the etching characteristics including a depths and widths of ITO films as a function of laser fluence using SEM(Scanning Electron Microscopy) and surface profiler($\alpha$-step 500).

  • PDF

Formation of PDP cell structure using Nd:YAG laser beam (Nd:YAG 레이저빔에 의한 PDP 방전셀의 구조 형성)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.129-132
    • /
    • 2000
  • The PDP(Plasma Display Panel) barrier rib material on the glass substrate was patterned for fabrication of the PDP cell using Nd:YAG laser(1064 nm) which can generate the second(532 nm) and forth(266 nm) harmonic wave by HGM(harmonic generation modules). At a scan speed of 20 ${\mu}m/s$ with the second harmonic wave(532 nm) of Nd:YAG laser, the etching threshold laser fluence of the PDP material was 6.5 $mJ/cm^2$ and a sample(thickness = 180 ${\mu}m$) on the glass substrate was removed clearly at a laser fluence of 19.5 $mJ/cm^2$. In order to increase the throughput of the fabrication we divided a single-beam into multi-beams by using a metal mask between the sample and the focusing lens. As a result, 10 lines of PDP cell were formed by one laser beam scanning at a scan speed of 200 ${\mu}m/s$ and a laser fluence of 2.86 $J/cm^2$.

  • PDF