• Title/Summary/Keyword: Laser Designator

Search Result 3, Processing Time 0.019 seconds

A Study on the Laser Designator for the Missile System Using Semi-Active Laser Seeker (반능동 레이저 탐색기를 사용하는 유도무기체계의 레이저 조사기 연구)

  • Bae, Minji;Ha, Jaehoon;Park, Heechan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.466-474
    • /
    • 2020
  • Semi-active laser missile systems with high accuracy are necessary to asymmetric threats, such as UAV(Unmanned Aerial Vehicle). They are usually used to attack stationary or slow moving targets, therefore we should study on the laser designator which can detect and track fast moving targets in order to deal with UAV. In this study, design specifications are came up through performance analysis of existing laser designators, and laser designation method for fast moving target is developed. The detection and tracking performance of developed laser designator are verified through inside/outside tests on ground/aerial stationary/moving targets. Through this study, we obtain laser designator techniques that could be applied to actual semi-active laser missile systems.

Implementation of the Simulator for Evaluating a Long-range Laser Range Finder and a Laser Target Designator (장거리 레이저 거리측정기 및 레이저 표적지시기 성능 평가를 위한 모사기 구현)

  • Lee, Young-Ju;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1026-1030
    • /
    • 2015
  • In this paper, we propose a signal processing board of an optical delay simulator for evaluating a long-range laser range finder and a laser target designator. We improved the accuracy by applying the clock multiplication and the correction of error gradient. To evaluate the performance of the proposed method, we implemented a prototype board and performed experiments. As a result, we implemented the optical delay simulator with resolution less than 0.7m in measuring distance 60km and a standard deviation of 0.041m. The PRF code detection logic and generation logic have a stability less than 0.03% and 0.08% compared to the NATO standard, respectively.

Implementation of Digital Signal Processing Board Suitable for a Semi-active Laser Tracking to Detect a Laser Pulse Repetition Frequency and Optimization of a Target Coordinates (반능동형 레이저 유도 추적에 적합한 레이저 펄스 반복 주파수 검출을 위한 디지털 신호처리 보드 구현 및 표적 좌표 최적화)

  • Lee, Young-Ju;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.573-577
    • /
    • 2015
  • In this paper, we propose a signal processing board suitable for a semi-active laser tracking to detect an optical signal generated from the laser target designator by applying an analog trigger signal, the quadrant photodetector and a high speed ADC(analog-digital converter) sampling technique. We improved the stability by applying the averaging method to minimize the measurement error of a gaussian pulse. To evaluate the performances of the proposed methods, we implemented a prototype board and performed experiments. As a result, we implemented a frequency counter with an error 14.9ns in 50ms. PRF error code has a stability of less than 1.5% compared to the NATO standard. Applying the three point averaging method to ADC sampling, the stability of 28% in X-axis and 22% in Y-axis than one point sampling was improved.