• Title/Summary/Keyword: Laser Bending

Search Result 113, Processing Time 0.021 seconds

Structural Analysis of the Dual Thickness Laser Welded Frame (이종두께 레이저 용접 프레임의 구조해석)

  • 이영신;윤충섭;오재문
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • In this paper, the stress, buckling and vibration analyses have been performed for several case with the spot weld stiffened rear side frame, the unstiffened rear side frame and the dual thickness laser weld rear side frame. For stress and vibration analyses, the clamped boundary condition with spring supports are used. But for the buckling analyses, the both ends simply supported boundary conditions are used. For the nummerical analyses, ANSYS 5.0 code is adopted. Maximum stress of the spot weld stiffened rear side frame occurs in the main frame and is 80.9 MPa. Maximum strain is 501 .mu.. The maximum stress of the dual thickness laser weld rear side frame of 1.8mm thickness structure is equal with the stress of spot weld stiffened frame. The weight of dual thickness laser weld frame can be reduced about 17.2%. For the stiffened spot weld rear side frame with both ends simply supported boundary conditon, the bucking load is 52.54 kN. When the thickness of the dual thickness laser weld rear side frame become 1.9mm thickness structure, the buckling load of the stiffenerd rear side frame is equal to that of dual thickness laser weld frame. The reduction of the structure weight is about 5%. The fundamental natural frequency of the stiffened spot weld rear side frame for bending mode is 163.6 Hz and that of the dual thickness laser weld rear side frame is 179.8 Hz.

  • PDF

Effects of passivation layer on the thermal deformation behavior of metal film used in semiconductor devices (반도체용 박막재료의 열응력-변형 특성에 미치는 passivation 층의 영향 분석)

  • Choi, Ho-Seong;Lee, Kwang-Ryol;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.732-734
    • /
    • 1998
  • Metal thin films such as aluminum have been used as interconnects in semiconductor device. Recently, these materials are applied to structural materials in microsensors and microactuators. In this study, we evaluate deformation and strength behavior of aluminum alloy film. Three layer model for thermal deformation of multilayered thin film material is introduced and applied to Si/Al(1%Si)/$SiO_2$ system. Based on beam bending theory and concept of bending strain. elastic and elastic/plastic thermal deformation behaviors of multilayered materials can be estimated. In the case of plastic deformation of ductile layer, strain rate equations based on deformation mechanism map are employed for describe the stress relaxation effect. To experimentally examine deformation of multilayered thin film materials, in-situ laser scanning method is used to measure curvature of specimens during heating and cooling. The thickness of $SiO_2$ layer is varied to estimate third-layer effect of thermal deformation of metal films, and its effect on deformation behavior are discussed.

  • PDF

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.

Characterization and correction of bemding deformation in pizeoelectric ceramics displacement (길이변조용 압전소자의 휨 측정과 보정)

  • 김재완;남승희;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • We suggest a method to measure and correct bending deformation in piezoelectric ceramics displacement. The angle and direction of the bending deformation are measured by monitoring the position of a laser beam reflected on a mirror which is attached to the piezoelectric ceramics with the uncertainty of the angle measurement of $0.36\mu$rad. We divided the electrode of a piezoelectric ceramic into 3 parts and connected 3 capacitors to each electrode in order to apply different voltage to each electrode with one voltage supplier. The deformation was corrected by adjusting the capacitance of each capacitor and was reduced to 6.3%, comparing to the uncorrected case. By using this corrected piezoelectric ceramic to modulate the length of the ringdown cavity, the fluctuation of the decay time caused by the change in optic axis of the cavity was removed.emoved.

  • PDF

Experimental Study of a Power-Over-Fiber Module and Multimode Optical Fiber for a Fishing Camera System

  • Lee, Hyuek Jae;Jung, Gwang S.
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.468-473
    • /
    • 2017
  • We determined the feasibility of a fishing camera system using an optical fiber as the fishing line by testing a power-over-fiber (POF) module and multimode optical fiber. Operation of the remote camera module (RCM) without the battery was preferred because the removal of the charging or battery replacement section enabled a waterproof single-body type design. The average efficiency of the photovoltaic power converter (PPC) in the tested POF module was 32.6% at 820 nm, and thus, a high-power laser of at least 1.27 W was required for operating the developed RCM with an electrical dissipation of 413 mW. Because the optical fiber was wound on a fishing reel, composite loss composed of bending and tensile loss occurred. To mitigate the composite loss, we employed a simple holder that showed an improvement in the composite loss of 0.38 dB to 0.8 dB, which was considerably better than the losses without the holder.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

Flatness Control System of the Hot Strip by Using Tension Profile between Stands (스탠드간 장력프로파일을 이용한 열연판 평탄도 제어시스템)

  • 홍완기;이준정
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.27-36
    • /
    • 1999
  • To have high flatness quality of hot rolled strip in the hot strip finishing mill train, a new inter-stand tension profile measuring device of segmented looper roll type(coined as Flatness Sensing Inter-stand Looper, FlatSIL) and a new flatness control system have been developed in this study. The device measures the strip tension profile across the strip width and informs the strip wave pattern to new flatness control system where work roll bending mode to relieve the strip wave is determined. The existing automatic shape control system which uses laser type shape-meter installed at the outlet of the last finishing mill stand strip tension between down coiler and last finishig mill since the latent wave concealed by the strip tension between down coiler and last finishing mill stand cannot be measured by the laser distance-meter. Thus the existing shape control system is not able to control the flatness through the full strip length. The new flatness control system, however, works for full strip length during strip rolling as far as the tension profile measuring device and work roll bender are on. With the new flatness control system, work roll bender is automatically controller to minimize the latent wave of the running strip and the flatness quality as well as strip travelling stability has been noticeably improved from strip head through body to tail.

  • PDF

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

IN VIVO STUDY ON ABUTMENT TOOTH MOVEMENT FOR DISTAL EXTENSION REMOVABLE PARTIAL DENTURES (유리단 국소의치의 지대치 운동에 관한 생체학적 연구)

  • Lee, Jong-Yeop;Kim, Kwang-Nam;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.43-61
    • /
    • 1990
  • The laser reflexion method is a new technique which permits precise contactless measurement and observation of tooth mobility as well as tooth movement. The purposes of this study were to clarify the reliability of the laser reflexion method in clinical application and to measure the abutment tooth movement according to clasp design. This study was designed to determine 1) How much a bending movement of the impression plate stand affects the position of the reflexion pattern and how precise the patient bites into plate 2) Which clasp design causes greater movement of the abutment tooth. Under medium and maximum bite forces, tests were performed on central loading position which was 13mm distal to terminal abutment tooth of distal extension removable partial denture. The movement in the mesiodistal and buccolingual directions was measured. The Duncan's New Multiple-Range test was used to compare the means for the four castings under each direction-load combination; and the paired sample t-test was for medium and maximum bite forces. From this experiment, the following results were obtained. 1. The Roach clasp, the combination clasp, the RPI clasp, and the Akers clasp did not significantly differ in their effects on buccolingual movement of the abutment tooth. 2. The direction of abutment tooth movement was not significantly altered by clasp design and all abutment tooth movements were oriented distobuccally. 3. Under medium bite force, the Akers clasp caused greater distal movement of the abutment tooth than did the combination clasp and the RPI clasp. Under maximum bite force, the Akers clasp caused greater distal movement of the abutment tooth than did the RPI clasp. 4. The testing apparatus and procedures used in this study(laser reflexion method) proved to be reliable in clinical application.

  • PDF

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.