• Title/Summary/Keyword: Laser/arc hybrid welding

Search Result 58, Processing Time 0.026 seconds

Heat source modeling of laser arc hybrid welding considering keyhole formation (키홀 형성을 고려한 레이저 아크 하이브리드 용접 열원 모델링)

  • Jo, Yeong-Tae;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.97-99
    • /
    • 2005
  • Laser arc hybrid process is actively researched as a new welding method since it has several advantages by the combination of laser beam and electric arc. By the coupling of two different heat sources, laser and arc mutually assist and influence. High power laser can make the deep keyhole and arc plasma can form the large bead shape. In this paper the effect of two different heat sources to weld bead are investigated and as a result of analysis, it is shown that the lower part of keyhole is heated by laser and the upper part of weld pool is dominantly heated by arc.

  • PDF

Porosity Reduction in Laser Welding of Nitrided Carbon Steel (질화처리된 저탄소강 레이저 용접부의 기공 감소)

  • Ahn, Young-Nam;Kim, Cheolhee;Lee, Wonbeom;Kim, Jeonhan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.71-76
    • /
    • 2013
  • Gas nitriding is a surface hardening process where nitrogen is introduced into the surface of a ferrous alloy. During fusion welding of nitrided carbon steel, the nitride inside weld metal is dissolved and generates nitrogen gas, which causes porosities - blow holes and pits. In this study, several laser welding processes such as weaving welding, two-pass welding, dual beam welding and laser-arc hybrid welding were investigated to elongate the weld pool to enhance nitrogen gas evacuation. The surface pits were successfully eliminated with elongated weld pool. However blowholes inside the weld metal were effective reduced but not fully disappeared.

Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE (CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증)

  • Lee, Dug-Young;Choi, Bo-Sung;Choi, Won-Ho;Ahn, Jang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.

Development of CO Laser-Arc Hybrid Welding Process

  • Lee, Se-Hwan
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.15-20
    • /
    • 2002
  • The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process blown as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma(LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well-focused melted spots.

  • PDF

Butt Weldability of Shipbuilding Steel AH36 Using Laser-Arc Hybrid Welding (조선용 강판 AH36의 레이저-아크 하이브리드 용접시 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Suh, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.901-906
    • /
    • 2016
  • The purpose of this study is to improve productivity by implementing one-pass full penetration welding using laser-arc hybrid welding for AH36. On increasing the thickness of the plate, a higher power of laser and arc was required to obtain full penetration. However, increasing the power of heat source caused undercut defects at both ends of the bead. This undercut was prevented by controlling the parameters of welding voltage and pulse correction. Hardness measurement and tensile test were conducted to apprehend the mechanical properties of weld. Also, by carrying out the microstructure observation for laser and arc regions, microstructural properties were understood.

Improvement of Penetration Characteristics by Plasma Augmented Laser Welding of Small Diameter Stainless Steel Tubes (PALW을 이용한 소경 스테인리스강 튜브의 용입특성 개선)

  • Hwang Jae-Ryeon;Yoon Suk-Hwan;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.30-35
    • /
    • 2004
  • Laser welding is obviously an attractive method to join small, thin parts such as small stainless steel tubes, but it is very sensitive to the joint clearance and tolerance, and this makes laser welding difficult to obtain consistent welding qualities over time. Recently, Plasma Augmented Laser Welding(PALW) is being developed to solve these problems. In this study, plasma arc welding(PAW) was introduced to join conventional V-grooved butt joint of thin stainless steel strips using single laser heat source in manufacturing small stainless steel tubes. The effect of the welding speed enhancement is investigated by the experiments. Effects of welding directions, distance between the heat sources and intensity of arc heat source on the optimal welding speed was investigated. Through this research, it was confirmed that PALW process has higher welding speed and robustness than laser welding process.