• Title/Summary/Keyword: Lasco

Search Result 39, Processing Time 0.027 seconds

Mass estimation of halo CMEs using synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • A coronal mass ejection (CME) mass is generally estimated by the total brightness measured from white-light coronagraph observations. The total brightness are determined from the integration of the Thomson scattering by free electrons of solar corona along the line of sight. It is difficult to estimate the masses of halo CMEs due to the projection effect. To solve this issue, we construct a synthetic halo CME with a power-law density distribution (ρ = ρ0r-3) based on a full ice-cream cone model using SOHO/LASCO C3 observations. Then we compute a conversion factor from observed CME mass to CME mass for each CME. The final CME mass is determined as their average value of several CME masses above 10 solar radii. Our preliminary analysis for six CMEs show that their CME mass are well determined within the mean absolute relative error in the range of 4 to 15 %.

  • PDF

Comparing Directional Parameters of Very Fast Halo CMEs (코로나질량방출의 방향지시 매개인수 비교)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2008
  • We examine geoeffective directional parameters of coronal mass ejections (CMEs). We select 30 front-side halo CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and longitude is less than ${\pm}30^{\circ}$. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs directional parameters (Earthward direction, eccentricity, ${\Delta}$ distance and central angle parameter) and the minimum value of the Dst index. We have found that the Earthward direction parameter has a good correlation with the Dst index, the eccentricity parameter has a much better correlation with the Dst index. The bo distance and central angle parameter has a poor correlation with the Dst index. It's, however, well correlated with the Dst index in very strong geomagnetic storms. Most of CMEs causing very strong storms (Dst ${\leq}$-200nT) are found to have large Earthward direction parameter $({\geq}0.6)$, small eccentricity, bo distance and central angle parameters $(E{\leq}0.4,\;{\Delta}X\;and\;sin\;{\theta}{\leq}0.2)$. These directional parameters are very important parameters that control the geoeffectiveness of very fast front-side halo CMEs.

Relationship between Coronal Mass Ejections Eccentricity parameter and the strength of geomagnetic storm

  • Rho, Su-Lyun;Chang, Heon-Young;Moon, Yong-Jae
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.1-24.1
    • /
    • 2008
  • We examine the eccentricity parameter (EP) of Coronal Mass Ejections (CMEs). For this, we select 298 front-side CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and angular width is greater than $120^{\circ}$ during from 1997 to 2007. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs eccentricity parameter and the minimum value of the Dst index. We find that strong geomagnetic storms (Dst < -200nT) are well correlated with the EP from the scattered plot. We also find that CMEs have high geoeffectiveness when they occurred near the center of the solar disk with the small EP and they have the small speed with the small EP. These results indicate that the CME EP also can be an important indicator to forecast CME geoeffectiveness such as Earthward direction parameter (Moon et al. 2005, Kim et al. 2008).

  • PDF

Hot plasmas in coronal mass ejection observed by Hinode/XRT

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.97-97
    • /
    • 2012
  • Hinode/XRT has observed coronal mass ejections (CMEs) since it launched on Sep. 2006. Observing programs of Hinode/XRT, called 'CME watch', perform several binned observations to obtain large FOV observations with long exposure time that allows the detection of faint CME plasmas in high temperatures. Using those observations, we determine the upper limit to the mass of hot CME plasma using emission measure by assuming the observed plasma structure. In some events, an associated prominence eruption and CME plasma were observed in EUV observations as absorption or emission features. The absorption feature provides the lower limit to the cold mass while the emission feature provides the upper limit to the mass of observed CME plasma in X-ray and EUV passbands. In addition, some events were observed by coronagraph observations (SOHO/LASCO, STEREO/COR1) that allow the determination of total CME mass. However, some events were not observed by the coronagraphs possibly because of low density of the CME plasma. We present the mass constraints of CME plasma and associated prominence as determined by emission and absorption in EUV and X-ray passbands, then compare this mass to the total CME mass as derived from coronagraphs.

  • PDF

Radial and azimuthal oscillations of 24 Halo Coronal Mass Ejections using multi spacecraft

  • Lee, Harim;Moon, Yong-Jae;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2017
  • We have made an investigation on the radial and azimuthal wave modes of full halo coronal mass ejections (HCMEs). For this, we consider 24 HCMEs which are simultaneously observed by SOHO and STEREO A & B from August 2010 to August 2012 when they were roughly in quadrature. Using the SOHO/LASCO C3 and STEREO COR2 A & B running difference images, we estimate the instantaneous apparent speeds of the HCMEs at 24 different position angles. Major results from this study are as follows. First, there are quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. Second, the amplitudes of instant speed variations are about a third of the projected speeds. Third, the amplitudes are found to have a weak anti-correlation with period. Our preliminary identification from SOHO observations shows that there are several distinct radial and azimuthal wave modes: m=0 (radial) for five events, m=1 for eleven events, m=2 for three events, and unclear for the other events. In addition, we are making a statistical investigation on the oscillation of 733 CMEs to understand their physical origins.

  • PDF

Statistical study on the kinematic classification of CMEs from 4 to 30 solar radii

  • Jeo, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2018
  • In this study, we perform a statistical investigation on the kinematic classication of 4264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups; deceleration, constant velocity, and acceleration motion. For this, we devise four dierent classication methods by acceleration, fractional speed variation, height contribution, and visual inspection. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed classied by the last three methods are consistent with one another. Fourth, according to the last three methods, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

  • PDF

Estimation of Halo CME's radial speeds using coronal shock waves based on EUV observations

  • Jeong, Hyunjin;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.4-55
    • /
    • 2018
  • Propagating speeds of coronal mass ejections (CMEs) have been calculated by several geometrical models based on multi-view observations (STEREO/SECCHI and SOHO/LASCO). But in 2015, we were unable to obtain radial velocity of a CME because the STEREO satellites were located near the backside of the sun. As an alternative to resolve this problem, we propose a method to combine a coronal shock front, which appears on the outermost of the CME, and an EUV-wave that occurs on the solar disk. According to recent studies, EUV-wave occurs as a footprint of the coronal shockwave on the lower solar atmosphere. In this study, the shock, observed as a bubble shape, is assumed as a perfect sphere. This assumption makes it possible to determine the height of a coronal shock, by matching the position of an EUV-wave on the solar disk and a coronal shock front in coronagraph. The radial velocity of Halo-CME is calculated from the rate of coronal shock position shift. For an event happened on 2011 February 15, the calculated speed in this method is a little slower than the real velocity but faster than the apparent one. And these results and the efficiency of this approach are discussed.

  • PDF

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • Choe, Seong-Hwan;Mun, Yong-Jae;Park, Yeong-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

Relationship between solar flares and halo CMEs using stereoscopic observations

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Sujin;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.82-82
    • /
    • 2016
  • To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.

  • PDF

Comparison between observation and theory for the stand-off distance ratios of CMEs and their associated ICMEs

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Jang, Soojeong;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2016
  • We examine whether the observational stand-off distance ratios of CMEs and their associated ICMEs could be explained by theoretical model or not. For this, we select 16 CME-ICME pairs from September 2009 to October 2012 with the following conditions: (1) limb CMEs by SOHO and their associated ICMEs by twin STEREO spacecraft and vice versa when both spacecraft were roughly in quadrature; (2) the faint structure ahead of a limb CME is well identified; and (3) its associated ICME clearly has a sheath structure. We determine the observational stand-off distance ratios of the CMEs by using brightness profiles from LASCO-C2 (or SECCHI-COR2) observations and those of the ICMEs by solar wind data from STEREO-IMPACT/PLASTIC (or OMNI database) observations. We also determine the theoretical stand-off distance ratios of the CME-ICME pairs using semi-empirical relationship based on the bow shock theory. We find the following results. (1) Observational CME stand-off distance ratio decreases with increasing Mach number at the Mach numbers between 2 and 6. This tendency is consistent with the results from the semi-empirical relationship. (2) The observational stand-off distance ratios of several ICMEs can be explained by the relationship.

  • PDF