• Title/Summary/Keyword: Larval rearing

Search Result 186, Processing Time 0.023 seconds

Spawning Behavior, Egg and Larvae Developments of Maroon Clownfish, Premnas biaculeatus (Maroon Clownfish, Premnas biaculeatus의 산란습성과 난 발생 및 자치어의 외부형태발달)

  • Kim, Jong-Su;Choi, Young-Ung;Rho, Sum;Yoon, Young-Seock;Jung, Min-Min;Song, Young-Bo;Lee, Chi-Hoon;Lee, Young-Don
    • Journal of Aquaculture
    • /
    • v.20 no.2
    • /
    • pp.96-105
    • /
    • 2007
  • A pair of maroon clownfishes with an indonesian native, reared in recirculation culture system to develope its aquaculture techniques. Courtship, spawning behavior, egg developments and rearing of the maroon clownfish larvae were documented. The larval development were described with illustrative figures. The spawning was occurred 8 times between Feburary and August 2004. The gravid female spawned during 15:00-20:00. The male mainly took care of the eggs supplying oxygen by water currents using their pectoral fins, anal fin and mouth. The fertilized eggs were separative-adhesive and oval in shape, and $1.99{\pm}0.03\;mm$ in longer diameter and $0.88{\pm}0.03\;mm$ in shorter diameter. The fertilized eggs were in deep-orange color. Cleavage occurred in 30 minutes after fertilization, and the egg reached 2 cells stage in 1 hour 10 minutes after fertilization at $27.0^{\circ}{\pm}0.5^{\circ}C$. The embryo was formed in 23 hours 40 minutes after fertilization. Hatching began in between $120{\pm}2$ hours and $150{\pm}12$ hours after fertilization at $27.0^{\circ}C$ in the incubator. Total length (TL) of the newly hatched larvae was 3.22 mm with mouth and anus opened. Ten days after hatching, mean TL of the larvae were 6.21 mm with 28 dorsal fin rays, 17 anal fin rays and 28 caudal fin rays. Nineteen days after hatching, mean TL of the larvae were 9.34 mm. At this stage the larva had three white bands on the body, and they began to feed on commercial diet.

Studies on the bionomics of Oriental moth, Cnidocampa flavescens WALKER, damaging to the persimmon tree in the southern part of Korea (감나무에 기생하는 Cnidocampa flavescens WALKER의 생태에 관한 연구)

  • Chung S. T.;Lee E. S.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.39-46
    • /
    • 1965
  • The author studied on the bionomics of Oriental moth. Cnidocampa flavescens WALKER, damaging to the persimmon tree n the southern part of Korea from 1964 to 1965. The results can be summarized as follows; 1. Emergence peak period of Oriental moth was mid-June in Taegu district and eggs are deposited on the opposite side of persimmon tree leaf. Specially most of eggs are deposited on the terminal part of opposite side and peak period s also mid-June. 2. Hatched Percentage of eggs was $84.4\%$ in 1964 while $96.1\%$ in 1965 at the rearing room. Mean egg Period was $5.984\pm0.162$ in 1964 while $6.262\pm0.094$ days in 1965. Thus during two years, the egg period was about 6 days. 3. In the growth ratio of Oriental moth fed on various host plants persimmon tree, Acer negund, Hazel-wood and Platanus, the best growth ratio was shown on the leaf of Hazel-wood from 1st till 3rd instar, but, on the contrary, persimmon tree was the best from 4th till the last instar. The growth ratio of head width was also the same tendency as the body length above mentioned. Individuals fed on the leaf of platanus were dead after 20 days. 4. Oriental moth has one generation a year and molts 6 times. The first molting occurred in 5 hours after hatched, and the other moltings were done at f days intervals. After 3 days since the last molting, larvae made the non for over-winter in it. 5. As the bristles on the process of larval body are different from each position and instar, judgement of instars are possible by the counting of bristles on the body according to the Table 8. Specially the bristle of L. 2., D. 2, 3 ,8. 10. and L. 1, 3, 4, 5, 6, 7, are perfectly different from each instar. From these bristles, instars can be recognized easily. 6. Pupation of larvae in the over-wintered cocoon on the stem of persimmon tree was done in mid-May and continued will early June when emergence will take place. 7. Mean number of eggs in the ovary was $1325.5\pm2.7182$

  • PDF

A BIOLOGICAL STUDY OF PENAEUS JAPONICUS BATE (보리새우 Penaeus japonicus Bate의 생물학적 연구)

  • PYEN Choong Kyu;RHO Sum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.93-102
    • /
    • 1970
  • 1. On the basis of the samples collected on the eastern coast of Koje-Do from May to September, 1969, studies have been made on the growth and the relationships between the carapace length and the body length, and between the carapace length and the body weight of Penaeus japonicus Bate. 2. The mean carapace length of P. japonicus was 51mm in May, 57mm in June, 47mm in July and 50mm in September respectively. 3. As a result of the present studies two populations of P. japonicus exist in waters around Koje-Do, namely the spring and fall spawning populations. 4. The relationship between the carapace length ($\iota$) and the body length(L) and between the carapace length and the body weight (W) are indicated by the following equations: May $$L=2.6544{\iota}+3.1258$$ $$W=1.892{\iota}^{1.9844}$$ June $$L=2.8659{\iota}+2.1796$$ $$W=1.082{\iota}^{2.4323}$$ July $$L=2.5840{\iota}+3.3090$$ $$W=1.290{\iota}^{2.3094}$$ September $$L=2.4234{\iota}+4.5775$$ $$W=1.599{\iota}^{2.1857}$$ 5. With regard to the relationships between the carapace length and the body length and between the carapace length and the body weight there is no significant difference between the populations spawning in June and September. 6. The relationships between the carapace length ($\iota$) and the body length (L) and between the carapace length and the body weight (W) for the samples cultured at three different localities are indicated by the following equations: Koje-do $$L=3.7738{\iota}+0.0805\;(r=0.934)$$ $$W=0.4690{\iota}^{3.0713}$$ Oma-do $$L=2.993{\iota}+1.6455\;(r=0.990)$$ $$W=0.6328{\iota}^{2.6579}$$ Kumdang-do $$L=3.2749{\iota}+0.9055\;(r=0.983)$$ $$W=0.5768{\iota}^{2.8076}$$ 7. During the larval stages the relationship between the body length (L) and the rearing day (D) is indicated by the following equations: Zoeal stages (1-3) L=0.1279D+0.2686 (r=0.979) Mysis (1) - Post larva (6) L=0.1697D+0.5634 (r=0.994) Post-larvs (7) - Post larvs (21) L=0.1344D+1.9501 (r=0.978)

  • PDF

Combination Culture of Rotifer Brachionus rotundiformis and Copepod Apocylops sp. (로티퍼 Brachionus rotundiformis와 코페포다 Apocyclops sp.의 혼합 배양)

  • Jung, Min-Min;Rho, Sum
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 1998
  • The small size food organism(under the size 150${\mu}m$) is needed as food for early stage of marine fish larvae of small mouse (e.g the group of grouper). This study was investigated to develop a method for copepod Apocyclops sp. culture in combination with the rotifer B. rachionus for stable culture of copepod species and harvest of various size food organisms. The culture conditions as temperature, salinity, culture volume, photo period, culture preiod and observation interval were 25${\circ}C$, 22ppt, 40ml, all dark except to observation time, 16 days and every two day during the experimental period, respectively. The Tetraselmis suecica was used as the food for the two testing orgtanisms. After every two day counting, theses two organisms were transferred to fresh culture tanks with Tetraselmis suecica of $7{\times}10^5$cells/ml. In the mixed culture of B. rotundiformis and A. sp., growth of rotifer was suppressed by mixed culture with A. sp. whereas the growth of copepod Apocyclops was promoted in the mixed culture with rotifer B. rotundiformis (the maximum density was 22 individuals/ml through the 16 culture days). Moreover, the number of copepod nauplius were promoted about 2 times in the mixed culture compared to the numbers in single species culture. With this combination culture, the havested two food organisms of variable sizes. This size variation of food organisms was useful tools for larval rearing of small mouse marine fish larvae and next step food organism size of post hatched larvae.

  • PDF

The effects of temperatures on the development of Oriental -tobacco budmoth, Heliothis assulta Guenee, and control effects of Thuricide $HP^{(R)}$- (고추담배나방의 생태 및 방제에 관한 연구 -온도가 담배나방의 생육에 미치는 영향 및 Thuricide $HP^{(R)}$의 방제 효과-)

  • Chung C. S.;Hyun J. S.
    • Korean journal of applied entomology
    • /
    • v.19 no.1 s.42
    • /
    • pp.57-65
    • /
    • 1980
  • The oriental tobacco budmoth, Heliothis assulta Guenee were reared under various temperatures; $20^{\circ}C,\;25^{\circ}C,\;30^{\circ}C$ and the control effects of Thuricide $HP^{(R)}$ were examined. The results obtained were as fellows: 1. The adult longevity of oriental tobacco budmoth was 11.35 days, and 3.00 days for preovipositional period, 4.75 days for ovipositional Period, and 3.50 days for postovipositional period. 2. The total number of eggs laid by a female were 307 at $20^{\circ}C$, 413 at $25^{\circ}C$ and 189 at $30^{\circ}C$. The number of eggs per female per day were 64.05 in average. 3. The average egg Periods were 7.71 days at $20^{\circ}C$, 4.12 days at $25^{\circ}C$ and 3.58 days at $30^{\circ}C$ and the hatchiabilities were $71.25\%,\;78.49\%\;and\;81.05\%$ at the respective incubation temperatures. 4. The larval developmental periods were 43.51 days at $20^{\circ}C$, 21.79 days at $25^{\circ}C$ and 18.05 days at $25^{\circ}C$ and the mortalities were $80.70\%,\;95.93\%$ and $87.01\%$ at the respective temperatures. 5. The pupal developmental periods were 24.22 days at $20^{\circ}C$, 12.36 days at $25^{\circ}C$ and 11.50 days at $30^{\circ}C$ and the mortalities at the respective temperatures were $18.18\%,\;42.11\%\;and\;40.00\%$. 6. The calculated threshold temperatures for the development were $11.61^{\circ}C$ for the eggs, $11.96^{\circ}C$ for the larvae, and $10.06^{\circ}C$ for the pupae. The estimated total effective temperatures were 60.41 day degrees for e eggs, 319.35 day degrees for the larvae, 222.66 day degrees for the pupae, and overall total effective temperatures, however, would be ranged 640-660 day degrees if the reproductive period of the adult was considered. 7. The relationship between the overall developmental periods and the rearing temperature could be Y=-4.272X+155.39 (r=0.9105), where Y; number of days required to complete the life cycle, X; treated temperatures. 8. The control effects of Thuricide $HP^{(R)}$ were $73.43\%$ for spray and $58.22\%$ for bait applications.

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF