• Title/Summary/Keyword: Large-scale modular block

Search Result 5, Processing Time 0.018 seconds

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

Stability evaluation of reinforced earth walls based on large-scale modular blocks (대형 축조블록을 이용한 보강토옹벽의 안정성 평가)

  • Han, Jung-Geun;Kim, Min-Woo;Hong, Kikwon;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 2014
  • This paper describes external and internal stability of reinforced earth wall using large-scale modular block and geogrid reinforcement. The evaluation for external and internal stability was conducted to analyze effect of wall height, reinforced soil (or backfill soils) and reinforcement strength. The external stability showed that the analysis cases were satisfied with design criteria, when the required minimum length and vertical spacing of reinforcement were 0.7H and 1m, respectively. The internal stability conformed that some cases were satisfied with design criteria in $25^{\circ}$ of internal friction angle of reinforced soil. Expecially, it will be applicable as wall structure considering a structural stability and economic efficiency based on evaluation of internal stability.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Assessment of Scale Effects on Dynamics of Water Quality and Quantity for Sustainable Paddy Field Agriculture

  • Kim, Min-Young;Kim, Min-Kyeong;Lee, Sang-Bong;Jeon, Jong-Gil
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Modeling non-point pollution across multiple scales has become an important environmental issue. As a more representative and practical approach in quantifying and qualifying surface water, a modular neural network (MNN) was implemented in this study. Two different site-scales ($1.5\;{\times}\;10^5$ and $1.62\;{\times}\;10^6\;m^2$) with the same plants, soils, and paddy field management practices, were selected. Hydrologic data (rainfall, irrigation and surface discharge) and water quality data (time-series nutrient loadings) were continuously monitored and then used for the verification of MNN performance. Correlation coefficients (R) for the results predicted from the networks versus measured values were within the range of 0.41 to 0.95. The small block could be extrapolated to the large field for the rainfall-surface drainage process. Nutrient prediction produced less favorable results due to the complex phenomena of nutrients in the drainage water. However, the feasibility of using MNN to generate improved prediction accuracy was demonstrated if more hydrologic and environmental data are provided. The study findings confirmed the estimation accuracy of the upscaling from a small-segment block to large-scale paddy field, thereby contributing to the establishment of water quality management for sustainable agriculture.

A High-Performance Scalable ATM Switch Design by Integrating Time-Division and Space-Division Switch Architectures

  • Park, Young-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.48-55
    • /
    • 1997
  • Advances in VLSI technology have brought us completely new design principles for the high-performance switching fabrics including ATM switches. From a practical point of view, port scalability of ATM switches emerges as an important issue while complexity and performance of the switches have been major issues in the switch design. In this paper, we propose a cost-effective approach to modular ATM switch design which provides the good scalability. Taking advantages of both time-division and space-division switch architectures, we propose a practically implementable large scale ATM switch architecture. We present a scalable shared buffer type switch for a building block and its expansion method. In our design, a large scale ATM switch is realized by interconnecting the proposed shared buffer switches in three stages. We also present an efficient control mechanism of the shared buffers, synchronization method for the switches in each stage, and a flow control between stages. It is believed that the proposed approach will have a significant impact on both improving the ATM switch performance and enhancing the scalability of the switch with a new cost-effective scheme for handling the traffic congestion. We show that the proposed ATM switch provides an excellent performance and that its cell delay characteristic is comparable to output queueing which provides the best performance in cell delay among known approaches.

  • PDF