• Title/Summary/Keyword: Large-scale Mine

Search Result 34, Processing Time 0.033 seconds

A Study on the Field test of the Ready-mixed Shotcrete using in the Large-scale Mine (광산 대규격 갱도에 대한 레디믹스트 숏크리트의 현장 적용성 평가)

  • Kim, Dong-Min;Lee, Heung-Soo;Shin, Hong-Jun;Kang, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1511-1516
    • /
    • 2009
  • In recent years, the large-scale shaft have been appling in domestic mine for mass production using a large machine, the safety of mine also have been increasing. And the new trial that shotcrete of tunnel field was apply to mine support was progressed. But, the conditions of domestic mine was different from that of tunnel, so, the batch plant of tunnel could not be installed in mine field because of low economical efficiency and difficulty for selection of site. Ready-mixed Shotcrete that mixed with high quality materials and could be controled shotcrete quality is producted in plants and transported to field, so do not need to batch plant. In this study, The Field test of the Ready-mixed Shotcrete was performed in the large-scale mine and was compared with the quality of Field mix shotcrete. As the result of the Field test, compressive strength and rebound of Ready-mixed Shotcrete were superior to these of Field mix shotcrete.

  • PDF

Environmentally Friendly Utilization of the Abandoned Mine Sites As a Recreational Resource (폐광의 환경친화적 관광자원 개발 방안)

  • Choi, Yong-Bok
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • With reducing coal mining industry the number of coal mine sites between 1988 and 1998 was dropped from 347 to 12. Since the abandoned coal mine sites have been kept without any cares, they have raised various environmental and safety problems. Then, Korean government initiated a special law in 1995 for enhancing economic conditions and solving environmental problems with promoting developmental projects in the abandoned mining sites. As a result, casino business in Chungsun area has been opened to publics, and other large-scale developments such as ski slopes and resorts are planned. In addition, Boryung area in Chungchung province also will launch a large-scale project building golf courses. Based on this developmental trend, it is expected that lots of large-scale developments in other places will be taken place. In general, the large-scale developments have caused various environmental problems, and, thus, environmental aspects should be considered in a decision-making process. This paper examine the status of the abandoned mine sites in Korea and U.S. and suggests the alternatives of its utilization.

  • PDF

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

Evaluating the Stability of Large-scale Gangways Mined in a Limestone Mine Using Rock Classification Schemes (암반분류법을 이용한 석회석 광산 내 대규격 갱도의 안정성 평가)

  • Yoon, Yong-Kyun;Lee, Hong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.503-510
    • /
    • 2007
  • Rock classification schemes such as RMR, Q-system were applied to investigate the stability of large-scale gangways mined in a limestone mine. 22 areas for engineering geological surveys were selected and rock classifications at each survey point had been carried out. Considering the fact that the observed gangways have not experienced some severe failure and have been stably maintained till now, it is found that Q-system is more reasonable than RMR in evaluating the stability of unsupported span. Also, extended Mathews stability graph method which is a kind of revised Q-system was used to assess the stability of gangways and the results represent that all gangways except for one area are under stable condition. Based on above the mentioned results, the empirical equations to design the maximum unsupported span and critical height of a large-scale gangway are suggested.

A Study on the Cause Analysis of the Ground Subsidence in Limestone Mine (석회석 광산에서 발생한 지반침하에 대한 원인 분석 연구)

  • Lee, Sangeun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.497-514
    • /
    • 2020
  • This study investigated the causes of large-scale ground subsidence in the upper part of mining cavities of the Samdo limestone mine, Samcheok city, Gangwondo, Korea. Geological and electrical resistivity surveys were undertaken on the collapsed slope of the mountain and in the mine tunnel where subsidence occurred, with geotechnical evaluations and numerical analysis. It is concluded that wide mining cavities, with irregular pillars in unstable rock masses hosting discontinuities, weathered over time, resulting in subsidence occurring along a fault plane due to increasing ground stress.

Construction of Mine Geospatial Information by Total Station and 3D Laser Scanner (토털스테이션과 3D 레이저 스캐너에 의한 광산공간정보 구축)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.520-525
    • /
    • 2019
  • Mines are an important infrastructure for securing resources, but safety problems can arise in the course of operation. Recently, the mining process is very complicated due to the large scale and mechanization. Therefore, it is necessary to construct accurate geospatial information on mine for systematic and safe mine operation. The geospatial information construction using the existing total station has a disadvantage that a lot of work time is required because the target must be collimated and measured. In this study, the data of the mines were acquired with the total station and the 3D laser scanner, and the mine spatial information was constructed by using the shape based registration method. By using the static scanner data of some area applying the reference point surveying result of the total station, it was possible to construct the accurate result on the wide area acquired by the mobile scanner effectively. Also, the accuracy of the constructed geospatial information was evaluated and the deviation of mean 0.083m was shown. Point cloud products constructed through the research can contribute to the efficiency improvement of mine management by enabling quantitative analysis such as visualization of mine shape, distance, area and slope, and automation of drawing creation for cross section shape.

Ventilation Efficiency Evaluation of Domestic Limestone Mine Using Tracer Gas Method (추적가스법을 적용한 국내 석회석 광산의 환기성능 평가 연구)

  • Kim, Young-su;Roh, Jang-hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • Natural ventilation is employed in limestone mines that have been currently operated in Korea, and there has been a growing issue of a significantly weak airflow caused by the large-scale excavation. Thus, the air quality in the working area is considerably poor. In order to improve this circumstance, it is mainly required to examine ventilation performance. In this study, the examination of ventilation efficiency was conducted by using tracer gas method. The result of this work indicated detailedly the ventilation problems in research mine, in that extremely low air velocity, recirculation, and air change rate were evaluated quantitatively using tracer gas. Therefore the ventilation performance evaluation using tracer gas can be opted as a precise method to improve the working area in mines.

Evalution for Mechanical Property and Durability of Miner's Shotcrete (광산용 숏크리트의 역학적 특성 및 내구성 평가)

  • Nam-Gung, Kyeong;Ma, Sang-Joon;Lee, Kyeo-Re;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1461-1468
    • /
    • 2015
  • Mostly mine support(Rock bolt and Support) which is currently general for reinforcements of a large scale tunnel is applied, Some executing a reinforcement to Poor ground by cast-in-place shotcrete. However On domestic mine conditions that couldn't having every time after mine tunnel excavation, it couldn't ensure the field batch plant which is a fixed in an issue of economies and site security, constructing it by supply gets from shotcrete materials combined in neighborhood ready mixed concrete manufacturing plants. carried shotcrete in ready mixed concrete manufacturing plants as migration length and time are falling off in quality. But, it is difficult for construction quality control By quality control arbitrariness absence at on-scene. In the present study, carry out Laboratory Test by kinds and percentages of accelerating agent for evalution of Mechanical Property and Durability of Shotcrete.

Evaluation of Field Applicability with Coal Mine Drainage Sludge (CMDS) as a Liner: Part I: Physico-Chemical Characteristics of CMDS and a Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part I: 광산배수슬러지 및 혼합차수재의 물리·화학적 성질)

  • Lee, Jai-Young;Bae, Sun-Young;Woo, Seung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • CMDS (Coal Mine Drainage Sludge) is mainly generated from acid mine drainage during physicochemical treatment or electrical purification. CMDS is well worth considering on recycling possibilities in various areas. This research applies the liner and cover materials using waste disposal landfill generally to treat acid mine drainage sludge. In this Part I of the two parts paper, physico-chemical characteristics of CMDS, bentonite and cement to prepare the liner have been identified using XRD, XRF, FESEM. In addition, combining their physicochemical characteristics, the optimum mixing ratio has been determined to be 1: 0.5: 0.3 for CMDS: bentonite: cement by the batch tests. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$. Through the leaching test, it was confirmed that its mixture was environmentally safe. In the Part 2, a large-scale Lysimeter was used to simulate the effects of the layer on the freeze/thaw for evaluation on field applicability and stability.

Rock fracturing mechanisms around underground openings

  • Shen, Baotang;Barton, Nick
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.35-47
    • /
    • 2018
  • This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.