• 제목/요약/키워드: Large-Sized Solid Shape

검색결과 3건 처리시간 0.016초

삼차원 스캐너와 가변 적층 쾌속조형공정을 이용한 대형 입체 형상의 쾌속 제작 : 러쉬모어산 기념물 제작 사례 (Rapid Fabrication of Large-Sized Solid Shape using 3D Scanner and Variable Lamination Manufacturing : Case Study of Mount Rushmore Memorial)

  • 이상호;김효찬;송민섭;박승교;양동열
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1958-1967
    • /
    • 2004
  • This paper describes the method to rapidly fabricate the large-sized physical model with the envelope model size of more than 600 mm${\times}$ 600 mm${\times}$ 600 mm using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology. The fabrication procedure of the large-sized solid shape is as follows: (1) Generation of STL data from 3D scan data using 3D scanner, (2) generation of shell-type STL data by Boolean operation, (3) division of shell-type STL data into several pieces by solid splitting, (4) generation of USL data for each piece with VLM-Slicer, (5) fabrication of each piece by cutting and stacking according to USL data using VLM-ST apparatus, (6) completion of a shell-type prototype by zigzag stacking and assembly for each piece, (7) completion of a 3D solid shape by foam backing, (8) surface finish of a completed 3D solid shape by coating and sanding. In order to examine the applicability of the proposed method, the miniature of the Mount Rushmore Memorial has been fabricated. The envelope model size of the miniature of the Mount Rushmore Memorial is 1,453 mm${\times}$ 760 mm${\times}$ 853 mm in size. From the result of the fabricated miniature of the Mount Rushmore Memorial, it has been shown that the method to fabricate the large object using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology are very fast and efficient.

대형물의 RP 작업을 위한 절단 알고리즘의 개발 (Development of Slicing Algorithm for Rapid Prototyping Building about Big Sized Objects)

  • 채희창;강희용;유상훈;이승현;문홍렬
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.30-35
    • /
    • 2002
  • Nowadays, as the development period of new products becomes shorter and consumer's requirement is more various, the importance of Rapid Prototyping Technology has been rapidly increased. Rapid Prototyping makes prototypes or frictional parts directly using the 3D CAD data. But RP machines can make prototypes in limit size. For making large size prototype, we slice solid which is made of STL file, and then glue sliced solid. And if contact area of part is small, union solid will be easily destroyed for going down of adhesion. So we need to expand contact area, 1 suggest making a section into stair shape. This paper is concerned with slicing solid on STL file and improving on adhesion.

레이저 센서를 이용한 냉각탑용 축류팬 형상 정밀도 측정 시스템 (A Precision Measuring System using Laser Sensor for Axial Fans of Cooling Towers)

  • 이광일;강재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.925-928
    • /
    • 2003
  • In this paper, a precision measuring machine for large sized axial fans of cooling towers are developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. 3-dimensional measuring data are compared to the design data to compute the distortion of the axial fans. Two distortions such as the axis of the fan and the airfoils along the axis are introduced to define the shape precision of axial fans. Genetic algorithm is used to solve the optimization problem during computing the distortion. Results of distortion are displayed 3 dimensionally in a solid-modeler as well as 2-D drawings to help users find it with case.

  • PDF