• Title/Summary/Keyword: Large-Scale Motion

Search Result 223, Processing Time 0.026 seconds

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

THE ORIGIN OF LARGE SCALE GALACTIC MAGNETIC FIELDS

  • SUBRAMANIAN K.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.155-158
    • /
    • 1996
  • Magnetic fields correlated on several kiloparsec scales are seen in spiral galaxies. Their origin could be due to the winding up of a primordial cosmological field or due to amplification of a small seed field by a turbulent galactic dynamo. Both options have difficulties: There is no known battery mechanism for producing the required primordial field. Equally the turbulent dynamo may self destruct before being able to produce the large scale field, due to excess generation of small scale power. The current status of these difficulties is discussed. The resolution could depend on the nature of the saturated field produced by the small scale dynamo. We argue that the small scale fields do not fill most of the volume of the fluid and instead concentrate into intermittent ropes, with their peak value of order equipartition fields, and radii much smaller than their lengths. In this case these fields neither drain significant energy from the turbulence nor convert eddy motion of the turbulence on the outer scale to wave like motion. This preserves the diffusive effects needed for the large scale dynamo operation.

  • PDF

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion (면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION

  • BLASI PASQUALE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.483-491
    • /
    • 2004
  • Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.

Effects of multiple driving scales on incompressible turbulence

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2012
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and intracluster medium. To maintain turbulent motion, energy must be injected into the fluids. In turbulence studies, it is customary to assume that the fluid is driven on a scale, but there can be many different driving mechanisms that act on different scales in astrophysical fluids. We expect different statistical properties of turbulence between turbulence with single driving scale and turbulence with double driving scales. In this work, we perform 3-dimensional incompressible MHD turbulence simulations with energy injection in two ranges, 2${\surd}$12 (large scale) and 15

  • PDF

A Direct Numerical Simulation Study on the very Large-Scale Motion in Turbulent Boundary Layer (직접수치모사를 이용한 난류경계층 내의 거대난류구조 연구)

  • Lee, Jae-Hwa;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.977-982
    • /
    • 2009
  • Direct numerical simulation (DNS) of a turbulent boundary layer with moderate Reynolds number was performed to scrutinize streamwise-coherence of hairpin packet motions. The Reynolds number based on the momentum thickness (${\theta}_{in}$) and free-stream velocity (U${\infty}$) was varied in the range $Re_{\theta}$=1410${\sim}$2540 which was higher than the previous numerical simulations in the turbulent boundary layer. In order to include the groups of hairpin packets existing in the outer layer, large computational domain was used (more than 50${\delta}_o$, where ${\theta}_o$ is the boundary layer thickness at the inlet in the streamwise domain). Characteristics of packet motions were investigated by using instantaneous flow fields, two-point correlation and conditional average flow fields in xy-plane. The present results showed that a train of hairpin packet motions was propagating coherently along the downstream and these structures induced the very large-scale motions in the turbulent boundary layer.