• Title/Summary/Keyword: Large-Fire Areas

Search Result 82, Processing Time 0.024 seconds

NEW TREND OF FIRE SCIENCE AND EIRE PROTECTION TECHNOLOGY

  • Sugahara, Shinichi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.19-26
    • /
    • 1997
  • Firesafety design engineerings have been mainly derived from complicated rearrangement of descriptive specifications in codes or regulations through a great number of lessons from fire disasters. In this paper, the author refers to some recent developments in the field of building fire protection. At first, the author expresses his viewpoints concerning performance-based design codes, which have been popular throughout the world as a symbol of freedom from restricted usage of building materials and components prescrived in regulation or bylaws, in spite of some conflicts between objects-oriented design method and industrial mass production. Secondly, the author introduces several innovative fire protection methods adopted for large or void spaces in building complex. Finally, the author forcasts a next development of firesafety science and technology, aimed at securing personal safety in hyperscale urban areas.

  • PDF

On modeling of fire resistance tests on concrete and reinforced-concrete structures

  • Ibrahimbegovic, Adnan;Boulkertous, Amor;Davenne, Luc;Muhasilovic, Medzid;Pokrklic, Ahmed
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.285-301
    • /
    • 2010
  • In this work we first review the statistical data on large fires in urban areas, presenting a detailed list of causes of fires, the type of damage to concrete and reinforced concrete structures. We also present the modern experimental approach for studying the fire-resistance of different structural components, along with the role of numerical modeling to provide more detailed information on quantifying the temperature and heat flux fields. In the last part of this work we provide the refined models for assessment of fire-induced damage in structures built of concrete and/or reinforced-concrete. We show that the refined models of this kind are needed to provide a more thorough explanation of damage and to complete the damage assessment and post-fire evaluations.

A Study on the Possibility of Damage by Anti-aircraft Debris between the Response of Unmanned Aircraft (무인기 대응 간 대공무기 파편에 의한 피해 가능성 연구)

  • Kim, Sea Ill;Shin, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • When enemy drones infiltrate large urban areas, various forms of great republics are deployed in large areas to respond. Due to the characteristics of a large number of government-run aircraft, the residual coal, other than the hit bullet, falls into various sizes of debris after its own explosion. The damage rate was analyzed by dividing the debris into anti-aircraft guns and guided weapons by deriving four factors: critical speed, fragmentation mass, initial speed of debris, and object collision speed, which can cause damage to human life as the debris falls to the ground. In the future, the North is expected to infiltrate the capital city of Seoul by operating unmanned aerial vehicles, which are asymmetric forces, and the damage could be minimized by setting up pre-fatal and fire-restricted zones to minimize casualties between responses.

Can the Expansion of Forest Roads Prevent Large Forest Fires? (산림 내 도로의 확대는 대형산불을 막을 수 있는가?)

  • Suk-Hwan Hong;Mi-Yeon An;Jung-Suk Hwang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.439-449
    • /
    • 2023
  • This study was conducted to verify the role of forest roads in the extinction of large forest fires in Korea. The study area was the forest fire-damaged area of Gangneung City, Gangwon Special Self-Governing Province, in April 2023, which is one of the areas with the highest road density among the major forest fires that have occurred so far. The scope of the forest fire damage area was confirmed through on-site survey, and the intensity of the fire was carried out through Sentinel-2 satellite imagery analysis. After that, the relationship between the damage range and intensity and the forest road was examined. About 59.6 km of roads were built within 50 m from the boundary of the forest fire damage area, which can easily access the entire 149.1 ha of forest fire damaged area. The road density is as high as 168.9 m/ha. All forests that were fragmented by roads were fragmented into 83 places, and all of these forests could be judged to have spread by spotting fire. As a result of analyzing the distribution of damage intensity by distance from the road to see the extent of damage according to the ease of access of fire extinguishing vehicles, it was confirmed that the proportion of areas with low-intensity damage has increased sharply even from 75 m or more away from the road. The results of analyzing the distribution of damage intensity by altitude to see the extent of damage according to the ease of access of fire extinguishing showed that the proportion of areas with low-intensity damage increased as the altitude increased, while the proportion of areas with damage of more than strong intensity decreased as the altitude increased. It was confirmed that there is no data that roads inside or adjacent to forests in the forest fire area of Gangneung City are effective in extinguishing forest fires. These results are contrary to the logic that increasing the road density in forests is effective in extinguishing forest fires. In the case of this fire area in Gangneung City, the road density is 43 times higher than the current road density in Korea claimed by the Korea Forest Service of 3.9 m/ha. This study suggests that roads can be a hindrance to extinguishing forest fires.

A Study on the Improvement Plan of Electrostatic Safety Management Level through Injury Analysis (재해분석을 통한 정전기 안전관리 수준 향상 방안 연구)

  • Choi, Sang-won;Jeong, Seong-Choon;Park, Jae Suk;Yang, Jeong Yeol;Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.37-45
    • /
    • 2019
  • The characteristic of fire and explosion related to electrostatic discharge is that it is difficult to reproduce the electrostatic charge and discharge phenomenon in addition to the large human and material damage. Therefore, in order to prevent accidents and disasters related to electrostatic in fire and explosion hazard areas, it is important to manage the level of electrostatic in a safe manner from the perspective of system between industrial facilities and human bodies. Rule 325 of the Occupational Safety and Health Regulations, "Prevention of Fire / Explosion due to Electrostatic", requires the use of grounding, conductive materials, humidification and electrification in order to prevent the risk of disaster caused by static explosion and electrostatic in the production process. In order to comply with these measures, related technologies, standards and systems are needed from the viewpoint of preventive measures related to electrostatic in fire and explosion hazard areas, but in Korea, it is still insufficient. Therefore, technical, institutional and managerial measures are needed as a precautionary measure to improve the level of ESD safety in fire and explosion hazard areas and prevent electrostatic related injury. In Korea, we analyzed the current status and characteristics of electrostatic related disaster by using the statistics of industrial accident and fire statistics of the Ministry of Employment and Labor. We also analyzed the current status and characteristics of electrostatic related disasters in Japan using JNIOSH accidents and disasters investigation cases and JNIOSH fire accident data of Japan Fire Bureau. The purpose of this study is to compare and analyze the current status of electrostatic related accidents and disasters in Korea and Japan in order to improve the safety management of electrostatic in fire and explosion hazard areas. In order to prevent accidents and disasters in the industrial field, The technical, institutional, and managerial measures to manage the level of electrostatic in a safe state were derived from the system point of view.

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

Characteristic Analysis of Forest Fire Burned Area using GIS (GIS를 이용한 산불피해지역 특성분석)

  • Lee, Si-Young;Kang, Yong-Seok;An, Sang-Hyun;Oh, Jeong-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The forest fire occurrences and burned area are increasing every year since 1990 in Korea, of which 65% is covered by forest. This study attempts to analyze topographic characteristics of forest fire burned area using GIS, and we also applied the statistical analysis based on the fire characteristics such as weather, forest as fuels and topography in small and large forest fire burned areas. The result of the statistical analysis shows that the size of forest fire was related to the slope length, slope degree, wind speed, forest type, and forest continuity.

  • PDF

Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images (다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1107-1115
    • /
    • 2019
  • Satellite data play a major role in supporting knowledge about forest fire by delivering rapid information to map areas damaged. This study, we used 7 Sentinel-2A images to detect change area in forests of Sokcho on April 4, 2019. The process of classify forest fire severity used 7 levels from Sentinel-2A dNBR(differenced Normalized Burn Ratio). In the process of classifying forest fire damage areas, the study selected three areas with high regrowth of vegetation level and conducted a detailed spatial analysis of the areas concerned. The results of dNBR analysis, regrowth of coniferous forest was greater than broad-leaf forest, but NDVI showed the lowest level of vegetation. This is the error of dNBR classification of dNBR. The results of dNBR time series, an area of forest fire damage decreased to a large extent between April 20th and May 3rd. This is an example of the regrowth by developing rare-plants and recovering broad-leaf plants vegetation. The results showed that change area was detected through the change detection of danage area by forest category and the classification errors of the coniferous forest were reached through the comparison of NDVI and dNBR. Therefore, the need to improve the precision Korean forest fire damage rating table accompanied by field investigations was suggested during the image classification process through dNBR.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

The Method of Linking Fire Survey Data with Satellite Image-based Fire Data (산불피해대장 정보와 위성영상 기반 산불발생데이터의 연계 방안)

  • Kim, Taehee;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1125-1137
    • /
    • 2020
  • This study aimed to propose the method of linking satellite image-based forest fire data to supplement the limitation of forest fire survey data that records only the ignition location and area of forest fire. For this purpose, a method was derived to link the fire survey data provided by the Korea Forest Service between January 2012 and December 2019 with MODIS and VIIRS image-based forest fire data. As a result, MODIS and VIIRS-based forest fire data out of 191 wildfires in the forest fire survey data were able to identify 11% and 44% of fire damage area, respectively. An average of 56% of forest damage area was extracted from VIIRS-based forest fire data compared to forest fire areas identified by high-resolution Sentinel-2A satellites. Therefore, for large-scale forest fires, VIIRS wildfire data can be used to compensate for the limitations of forest fire survey data that records only the ignition location and area.