• Title/Summary/Keyword: Large transformer

Search Result 331, Processing Time 0.023 seconds

Study on resonant frequency tracking for contactless power system using multiple primary winding contactless transformer (다중일차권선 비접촉변압기를 이용한 비접촉 전원시스템의 공진주파수 추적에 관한 연구)

  • Kim, Yoon-Ho;Rho, Sung-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.182-188
    • /
    • 2006
  • Contactless power system is base on power transmission by magnetic force. The transformer loss is large because it separated with the gap. Also the system has unstable factor, since the parameters in the secondary can vary with the system movement. This paper proposes light train power transmission system using contactless transformer with multiple primary winding. To increase the system efficiency and to obtain the stable power transmission to the dynamic load, a resonant inverter is adopted. The proposed system was verified by the simulation using Spice and Maxwell. The designed contactless power transmission system is implemented for 5[kW] class and experimental results are discussed.

Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer (변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구)

  • Jang, Jung-Bum;Kim, Jeong-Ki;Hwang, Kyeong-Min;Ham, Kyung-Won;Park, Jin-Wan;Lee, Chan-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Friction pendulum system is developed to prevent the damage of transformer, which is the most important among the electric power facilities, due to the earthquake and its seismic capacity is verified through the shaking table test. The applicability of friction pendulum system is confirmed as test results of compressive capacity test and friction test. Especially, as a result of shaking table test with a large scale transformer model, friction pendulum system gives to the reduction of maximum response acceleration by 30% at anchorage of transformer and 59% at the top of porcelain bushing comparing with the existing anchorage type. In addition to the reduction of maximum response acceleration, natural frequency of transformer is shifted to long period due to the friction pendulum system. In case that friction pendulum system is applied to the transformer, the damage of transformer can be prevented effectively under the earthquake.

Design and Application of CCFL Drive Inverter Transformer for LCD Backlight (LCD Backlight를 위한 CCFL 구동용 인버터 트랜스포머의 설계와 응용)

  • Cho, Sang-Ho;Han, Sang-Kyoo;Hong, Sung-Soo;SaKong, Sug-Chin;Kwon, Gi-Hyun;Lee, Hyo-Bum;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • In a large screen sized LCD-TV, a backlight system with only one cold cathode fluorescent lamp(CCFL) can not meet brightness specification. Thus, considerable numbers of CCFLs are used to meet brightness specification. In this paper, the design guide for the inverter transformer which can drive 4 CCFLs instantaneously is presented. With the presented design, the inverter transformer that guarantee identical lamp currents under the nonidentical lamp characteristic condition, can be implemented easily. The developed inverter transformer is adopted in a 42" LCD-TV backlight. The experimental results are presented to show the validity of the presented design guide.

Safety Analysis and Safety Measures of 22900/1200V Oil Immersed Transformer at Power Supply System (전철 급전시스템의 22900/1200V 유입변압기 안전성 분석)

  • Lee, Jong-Su;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1335-1342
    • /
    • 2013
  • Subway is electrified railway system nowadays, in which liquid dielectric transformers have been widely used, though mold type transformers are replacing it. The transformers supplies large electric power and have innate hazards causing accidents under operation. A number of researcher have carried out on failures of it and have oriented to identify transformer's failure causes and how to maintain it healthy state. The transformer failures can cause serious accidents which can provoke economic loss and leads persons to kill. In this paper, we carried out a safety activity to reveal hazards and to estimate risk of subway liquid dielectric transformers using FMEA, HAZOP and What-if methods. In case of installing safety devices in oil immersed transformer, we tried to evaluate an effect on a subsystem's failure rate. We proposed how to design subsystem failure rate and safety device failure rates.

The Response to Impulse Signal on Three Phase Transformer using Vector Network Analyzer (벡터 회로망 분석기 측정을 기반으로 한 3상 변압기의 시간영역 펄스 신호에 대한 응답 분석)

  • Kim, Kwangho;Jung, Jongman;Nah, Wansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 2015
  • Transformer is widely used element on power system and industrial area. Especially the transformers installed at power system are exposed to an environment of arbitrary changed. Thus the prediction of degradation and the analysis of response to impulse are important. To conduct those works, the electrical characteristics of system should be analyzed, effectively. But the analysis of electrical characteristic in electric machine level such as pole and pad-mounted transformer is almost no, thus commercial VNA (Vector Network Analyzer) is used to getting the response in wide frequency range. However, the output power of VNA is usually under 10mW, so verification for effectiveness of measuring electrically large component should be conducted, firstly. Next, after getting total S-parameter of transformer, predicting impulse response can be performed in time-domain with circuit simulator. In this paper, it is introduced that verification effectiveness of VNA using transfer function from SFRA (Sweep Frequency Response Analyzer), firstly. Next, total S-parameter, six by six matix form, was built using measured 2 port S-parameter from vector network analyzer. To get the response to impulse which is defined by IEC 60060-1, time-domain simulation is conducted to ADS (Advenced Design System) circuit simulator.

Research of Accelerated Aging According to Long-term Stability of Vegetable Oil (식물성절연유의 가속열화에 따른 장기적 안정성 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1148-1152
    • /
    • 2012
  • The vegetable-based insulating oils are substitutes for mineral oils in oil-filled transformer. The important properties of vegetable insulating oil is their higher flash/fire point and biodegradability than conventional mineral oils. The large oil-filled transformer eliminate the risk of explosion and fire should the transformer fail and oil ignite owing to high flash/fire point of vegetable insulating oil. In addition, higher biodegradability of vegetable insulating oils can let the oil spill damage reduced. In this experiment, the real oil-filled transformers using mineral oil and vegetable oil have accelerated aging. After working on the 100% accelerated aging experiment were conducted comparing the transformer. The hottest-spot temperature using thermal coefficients were calculated to determin the degree of accelerated aging. As a result, apply mineral oil transformer in accordance with the accelerated aging life come to an end. In contrast, vegetable insulating oils showed the opposite characteristics. Vegetable insulating oil compared to the mineral oil are found to be an long life. As a result, the vegetable oil has a long-term stability.

Analysis of AC Losses in HTS Transformer with Double Pancake Windings (초전도 변압기 교류 손실 해석)

  • Kim Jong-Tae;Kim Woo-Seok;Kim Sung-Hoon;Choi Kyeong-Dal;Joo Hyeong-Gil;Hong Gye-Won;Han Jin-Ho;Lee Hee-Gyoun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.812-814
    • /
    • 2004
  • AC loss is one of the important parameters in (High Temperature Superconducting)HTS AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

  • PDF

Manufacture and Characteristics of the Planar Transformer using low power loss magnetic materials (저손실 자심재료를 이용한 평면변압기 제조 및 동작특성)

  • Lee, Hae-Yon;Heo, Jeong-Seob;Kim, Hyun-Sik;Park, Hye-Young;Ustinov, Evgeniy
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.19-22
    • /
    • 2004
  • The resonant planar transformer, which had power capacity of 300 W, input voltage of 220 V, output voltage of 15 V, and switching frequency of 500 kHz, was designed and manufactured by using the planar core with large effective area and the flat copper lead frames for miniaturization and high efficiency of the switching mode power supply (SMPS). As well as, a resonant converter equipped with the above mentioned planar transformer was manufactured and electromagnetic characteristics were investigated. The numerical value of turns for 1st and 2nd winding were 12 and 2 respectively. The self inductance of 1st winding was 33.2 ${\mu}H$, very low leakage inductance of 1.27 ${\mu}H$, and the coupling factor of 0.98 were obtained at switching frequency of 300 kHz. The high efficiency of 88.21 % for the SMPS equipped with planar transformer was obtained at power capacity of 300 W.

  • PDF

A Study on the Adequate Capacity of Substation Transformer for Offshore Wind Farm (해상풍력발전단지의 해상변전소 변압기 적정 용량에 관한 연구)

  • Moon, Won-Sik;Jo, Ara;Huh, Jae-Sun;Bae, In-Su;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.83-89
    • /
    • 2015
  • This study suggests the methodology to decide the number and adequate capacity of substation transformer in a large-scale offshore wind farm (OWF). The recent trend in transformer capacity of offshore substation is analyzed in many European offshore wind farm sites prior to entering the studies. In order to carry out the economic evaluation for the transformer capacity we present the cost models which consist of investment, operation, and expected energy not supplied (EENS) cost as well as the probabilistic wind power model of wind energy that combines the wind speed with wind turbine output characteristics for a exact calculation of energy loss cost. Economic assessment includes sensitivity analysis of parameters which could impact the 400-MW OWF: average wind speed, availability, discount rate, energy cost, and life-cycle.