• Title/Summary/Keyword: Large region model

Search Result 625, Processing Time 0.033 seconds

Analysis on Field Applicability of SWAN Nested Model (SWAN Nested model의 현장 적용성 분석)

  • Kim, Kang-Min;Dae, Nam-Ki;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • The recent trend for numerical experiment requires more higher resolution and accuracy. Generally, in the wave field calculation, it starts with a large region formulation first and follows by a separated detailed region formulation by more denser grids for the main interest area considering the geographical and bathymetrical variation. The wave fields resulted from the large region calculation is being introduced into the detail region calculation as the incident waves. In this process there exists a problem of continuity. In order to get over such problem, method of variable gridding system or spectrum sampling, etc., is being used. However, it seems not enough to examine and analyze the related numerical errors. Therefore, it is investigated in this study the field applicability of the most pervasive use of wave model, the nested SWAN model. For this purpose, we made model experiment for two coastal harbours with different tidal environment, and compared and analyzed the result. From the analysis, it was found that both the extracted values, near the boundaries of the large and detail region and the nested formulation of SWAN model, show almost the same and no different between those with different tidal environment conditions. However it is necessary for reducing the numerical errors to set the boundaries for the detailed region outside of the rapid bathymetric change and deeper region.

A new drian-current model kof GaAs MESFET (GaAs MESFET의 새로운 드레인 전류 모델)

  • 조영송;신철재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.64-70
    • /
    • 1995
  • A new DC drain-current model of GaAs MESFET with improved accuracy is proposed in this paper. The proposed model includes the decrease of current slope according to gate voltages. It is possible to represent a transconductance compression using the proposed model. It shows improved transconductance and output resistance in accuracy from the forward biased gate region to near the cutoff region. The wquaer error of saturation current is decreased by 46% compared with Statz model. The proposed model can be useful for the simulation of large-signal operation and harmonic distortion.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

The Study on the improvement of dynamic characteristics with multi-orifice in airspring (멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구)

  • 김인수;황성호;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

A Numerical Analysis of an Unsteady Flow in a Cavity Using an Ekman Pumping Model (에크만 분출 모델을 이용한 캐버티 내의 비정상 유동특성에 관한 수치해석)

  • 서용권;박춘근;최윤환;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.102-110
    • /
    • 1997
  • A two dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically with an Ekman pumping model. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The material transport in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles. The Ekman pumping model suggested in this study was found to be satisfactory.isfactory.

  • PDF

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

A Study on the Confidence Region of the Stationary Point in a second Order Response Surface

  • Jorn, Hong S.
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.2
    • /
    • pp.109-119
    • /
    • 1978
  • When a response surface by a seconde order polynomial regression model, the stationary point is obtained by solving simultaneous linear equations. But the point is a function of random variables. We can find a confidence region for this point as Box and Hunter provided. However, the confidence region is often too large to be useful for the experiments, and it is necessary to augment additional design points in order to obtain a satisfactory confidence region for the stationary point. In this note, the author suggests a method how to augment design points "eficiently", and shows the change of the confidence region of the estimated stationary point in a response surface.e surface.

  • PDF

Simulation of Atmospheric Pollutants Concentration in the Urban Scale (도시 규모의 대기오염 농도 예측)

  • 이상득;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 1997
  • To predict the effects of air pollutant in the coastal region, we have developed the air pollutant model, the reaction model and the deposition of NO, $NO_2, and O_3$. And the numerical model of air pollutant concentration employed the nested technique to calculate with the higher resolution for the area. The nested technique used two grid systems, one for the large scale calculating region with the coarse mesh grid (CMG) and the other for the small scale region with the fine grid (FMG). In other to prove the validity of the simulation model the calculations were conducted for the present situation. The results of them reasonably agree with the observed data and proved the validity of the model.

  • PDF

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.