• Title/Summary/Keyword: Large language model

Search Result 323, Processing Time 0.033 seconds

Research Trends in Large Language Models and Mathematical Reasoning (초거대 언어모델과 수학추론 연구 동향)

  • O.W. Kwon;J.H. Shin;Y.A. Seo;S.J. Lim;J. Heo;K.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.

Towards a small language model powered chain-of-reasoning for open-domain question answering

  • Jihyeon Roh;Minho Kim;Kyoungman Bae
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • We focus on open-domain question-answering tasks that involve a chain-of-reasoning, which are primarily implemented using large language models. With an emphasis on cost-effectiveness, we designed EffiChainQA, an architecture centered on the use of small language models. We employed a retrieval-based language model to address the limitations of large language models, such as the hallucination issue and the lack of updated knowledge. To enhance reasoning capabilities, we introduced a question decomposer that leverages a generative language model and serves as a key component in the chain-of-reasoning process. To generate training data for our question decomposer, we leveraged ChatGPT, which is known for its data augmentation ability. Comprehensive experiments were conducted using the HotpotQA dataset. Our method outperformed several established approaches, including the Chain-of-Thoughts approach, which is based on large language models. Moreover, our results are on par with those of state-of-the-art Retrieve-then-Read methods that utilize large language models.

Current Status and Direction of Generative Large Language Model Applications in Medicine - Focusing on East Asian Medicine - (생성형 거대언어모델의 의학 적용 현황과 방향 - 동아시아 의학을 중심으로 -)

  • Bongsu Kang;SangYeon Lee;Hyojin Bae;Chang-Eop Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.49-58
    • /
    • 2024
  • The rapid advancement of generative large language models has revolutionized various real-life domains, emphasizing the importance of exploring their applications in healthcare. This study aims to examine how generative large language models are implemented in the medical domain, with the specific objective of searching for the possibility and potential of integration between generative large language models and East Asian medicine. Through a comprehensive current state analysis, we identified limitations in the deployment of generative large language models within East Asian medicine and proposed directions for future research. Our findings highlight the essential need for accumulating and generating structured data to improve the capabilities of generative large language models in East Asian medicine. Additionally, we tackle the issue of hallucination and the necessity for a robust model evaluation framework. Despite these challenges, the application of generative large language models in East Asian medicine has demonstrated promising results. Techniques such as model augmentation, multimodal structures, and knowledge distillation have the potential to significantly enhance accuracy, efficiency, and accessibility. In conclusion, we expect generative large language models to play a pivotal role in facilitating precise diagnostics, personalized treatment in clinical fields, and fostering innovation in education and research within East Asian medicine.

Technical Trends in Artificial Intelligence for Robotics Based on Large Language Models (거대언어모델 기반 로봇 인공지능 기술 동향 )

  • J. Lee;S. Park;N.W. Kim;E. Kim;S.K. Ko
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.95-105
    • /
    • 2024
  • In natural language processing, large language models such as GPT-4 have recently been in the spotlight. The performance of natural language processing has advanced dramatically driven by an increase in the number of model parameters related to the number of acceptable input tokens and model size. Research on multimodal models that can simultaneously process natural language and image data is being actively conducted. Moreover, natural-language and image-based reasoning capabilities of large language models is being explored in robot artificial intelligence technology. We discuss research and related patent trends in robot task planning and code generation for robot control using large language models.

A Training Feasibility Evaluation of Nuclear Safeguards Terms for the Large Language Model (LLM) (거대언어모델에 대한 원자력 안전조치 용어 적용 가능성 평가)

  • Sung-Ho Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.479-480
    • /
    • 2024
  • 본 논문에서는 원자력 안전조치 용어를 미세조정(fine tuning) 알고리즘을 활용해 추가 학습한 공개 거대 언어모델(Large Language Model, LLM)이 안전조치 관련 질문에 대해 답변한 결과를 정성적으로 평가하였다. 평가 결과, 학습 데이터 범위 내 질문에 대해 학습 모델은 기반 모델 답변에 추가 학습 데이터를 활용한 낮은 수준의 추론을 수행한 답변을 출력하였다. 평가 결과를 통해 추가 학습 개선 방향을 도출하였으며 저비용 전문 분야 언어 모델 구축에 활용할 수 있을 것으로 보인다.

  • PDF

Safety of Large Language Model-Tool Integration (거대 언어 모델 (Large Language Model, LLM)과 도구 결합의 보안성 연구)

  • Juhee Kim;Byoungyoung Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.210-213
    • /
    • 2024
  • 이 연구는 거대한 언어 모델 (Large Language Model, LLM)과 도구를 결합한 시스템의 보안 문제를 다룬다. 프롬프트 주입과 같은 보안 취약점을 분석하고 이를 극복하기 위한 프롬프트 권한 분리 기법을 제안한다. 이를 통해 LLM-도구 결합 시스템에서의 사용자 데이터의 기밀성과 무결성을 보장한다.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

Predicting Steel Structure Product Weight Ratios using Large Language Model-Based Neural Networks (대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측)

  • Jong-Hyeok Park;Sang-Hyun Yoo;Soo-Hee Han;Kyeong-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.119-126
    • /
    • 2024
  • In building information model (BIM), it is difficult to train an artificial intelligence (AI) model due to the lack of sufficient data about individual projects in an architecture firm. In this paper, we present a methodology to correctly train an AI neural network model based on a large language model (LLM) to predict the steel structure product weight ratios in BIM. The proposed method, with the aid of the LLM, can overcome the inherent problem of limited data availability in BIM and handle a combination of natural language and numerical data. The experimental results showed that the proposed method demonstrated significantly higher accuracy than methods based on a smaller language model. The potential for effectively applying large language models in BIM is confirmed, leading to expectations of preventing building accidents and efficiently managing construction costs.

Conversation Dataset Generation and Improve Search Performance via Large Language Model (Large Language Model을 통한 대화 데이터셋 자동 생성 및 검색 성능 향상)

  • Hyeongjun Choi;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.295-300
    • /
    • 2023
  • 대화 데이터와 같은 데이터는 사람이 수작업으로 작성해야 하기 때문에 데이터셋 구축에 시간과 비용이 크게 발생한다. 현재 대두되고 있는 Large Language Model은 이러한 대화 생성에서 보다 자연스러운 대화 생성이 가능하다는 이점이 존재한다. 이번 연구에서는 LLM을 통해 사람이 만든 적은 양의 데이터셋을 Fine-tuning 하여 위키백과 문서로부터 데이터셋을 만들어내고, 이를 통해 문서 검색 모델의 성능을 향상시켰다. 그 결과 학습 데이터와 같은 문서집합에서 MRR 3.7%p, 위키백과 전체에서 MRR 4.5%p의 성능 향상을 확인했다.

  • PDF