• Title/Summary/Keyword: Large ingot

Search Result 65, Processing Time 0.025 seconds

A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw (대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구)

  • 김영득;김동영;김동권;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

A Study of Multiple Scale FEM Modeling for Prediction of Inner Void Closing Behavior in Open Die Forging Process (자유단조 공정 시 내부 기공 거동 예측을 위한 멀티스케일 유한요소해석 연구)

  • Kwak, E.J.;Kang, G.P.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.319-323
    • /
    • 2012
  • In order to predict the internal void closing behavior in open die forging process, multiple scale modeling has been developed and applied. The huge size difference between ingot and inner void makes it almost impossible to simultaneously model the actual loading conditions and the void shape. Multiple scale modeling is designed to integrate macro- and micro- models effectively and efficiently. The void closing behavior was simulated at 39 different locations in a large ingot during upsetting and cogging. The correlation between the closing behavior and variables such as effective plastic strain and maximum compressive strain was studied in order to find an efficient measure for predicting the soundness of the forging.

Growth and characterization of 240kg multicrystalline silicon ingots grown by directional solidification (방향성 응고법으로 성장된 대형(240kg) 다결정 규소 잉곳의 성장 및 특성평가)

  • 김정민;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.182-186
    • /
    • 2003
  • The photovoltaic industry has been forced to lower the production cost in many ways. Ingot preparation technology is growing rapidly toward large-scale production. Multicrystalline silicon ingot of 69 cm square cross section, 240kg has been produced with fully automated equipment. During solidification, heat has been extracted from the bottom of the crucible through the graphite pedestal moving downward. The characteristics of the large ingot grown in this method are found to be uniform structurally and electrically.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

Effect of Radial Parameters in Cogging Process on Void Closure for Large Forged Products (단강품 기공의 압착성 향상을 위한 레이디얼 단련변수의 영향)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, J.H.;Baek, D.K.;Choi, S.K.;Park, H.J.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • This paper deals with the effect of radial parameters in cogging process such as reduction in height (Rh) and rotational angle ($\theta$) of a billet on a void closure for large forged products. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products, using a press with limited capacity and the sizes of the ingots becoming larger. Consequently, it is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; $\emptyset$ 6.0 mm and $\emptyset$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. Also open void and closed void in the ingot were tackled to show the differentiation of closing process of internal voids with respect to void sizes. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process.

  • PDF

Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth (대형 다결정 실리콘 잉곳 성장을 위한 ADS 법의 열유동에 관한 공정모사)

  • Shur, J.W.;Hwang, J.H.;Kim, Y.J.;Moon, S.J.;So, W.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • The development of manufacturing process of silicon (Si) ingots is one of the important issues to the growth of the photovoltaic industry. Polycrystalline Si wafers shares more than 60% of the photovoltaic market due to its cost advantage compared to mono crystalline silicon wafers. Several solidification processes have been developed by industry including casting, heat exchange method (HEM) and electromagnetic casting. In this paper, the advanced directional solidification (ADS) method is used to growth of large sized polycrystalline Si ingot. This method has the advantages of the small heat loss, short cycle time and efficient directional solidification. The numerical simulation of the process is applied using a fluid dynamics model to simulate the temperature distribution. The results of simulations are confirmed efficient directional solidification to the growth of large sized polycrystalline Si ingot above 240 kg.

Analysis of Heat Treatment Process for Large Forgings Considering Phase Transformation (대형 단조품 담금질 과정의 조직 및 응력분포 해석)

  • 이정호;이부윤;전제영;이명렬;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.964-968
    • /
    • 1996
  • The demands of size and quality of large steel shaft forgings for ship building, power plant, steel plant, etc. are rapidly increasing, and some of these productions are manufactured from ingot weighing more than 300 tons. For use as rotating components. shafts require toughness, strength and homogeneity, and therefore are produced through a variety of heat treatments. According to the increase of ingot size, micro- and macrosegregation and also mass effect of the product increase. Thus, special care should be paid to the heat treatment of such large shaft forgings. In this paper, the heat treatment of large shaft forgings such as rotor and back-up roll is calculated using the commercial finite element code SYSWELD. Calculated distributions of temperature and phase are compared with experimental data. The continuous cooling transformation diagram, thermal and mechanical properites of each phase are used. The phase proportion, hardness and residual stress during water quenching are discussed.

  • PDF

Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application (대형잉곳 전산모사 결함 정량화 및 활용연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Yoon, J.M.;Chae, Y.W.;Lee, D.H.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process (자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF