• Title/Summary/Keyword: Large eddy

Search Result 664, Processing Time 0.035 seconds

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.

Simultaneous Analysis of Concentration and Flow Fields in A Stirred Tank Using Large Eddy Simulation (대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1282-1289
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al.). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation oflocal concentration at different positions.

Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser

  • Duprat, Cedric;Metais, Olivier;Laverne, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • The objective of the present work is to improve numerical predictions of unsteady turbulent swirling flows in the draft tubes of hydraulic power plants. We present Large Eddy Simulation (LES) results on a simplified draft tube consisting of a straight conical diffuser. The basis of LES is to solve the large scales of motion, which contain most of the energy, while the small scales are modeled. LES strategy is here preferred to the average equations strategies (RANS models) because it resolves directly the most energetic part of the turbulent flow. LES is now recognized as a powerful tool to simulate real applications in several engineering fields which are more and more frequently found. However, the cost of large-eddy simulations of wall bounded flows is still expensive. Bypass methods are investigated to perform high-Reynolds-number LES at a reasonable cost. In this study, computations at a Reynolds number about 2 $10^5$ are presented. This study presents the result of a new near-wall model for turbulent boundary layer taking into account the streamwise pressure gradient (adverse or favorable). Validations are made based on simple channel flow, without any pressure gradient and on the data base ERCOFTAC. The experiments carried out by Clausen et al. [1] reproduce the essential features of the complex flow and are used to develop and test closure models for such flows.

Detached Eddy Simulation of Base Flow in Supersonic Mainstream (초음속 유동에서 기저유동의 Detached Eddy Simulation)

  • Shin, Jae-Ryul;Moon, Sung-Young;Won, Su-Hee;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.955-966
    • /
    • 2009
  • DES method is applied to an axisymmetric base flow at supersonic mainstream. The model is based on the Spalart-Allmaras (S-A) turbulence model in the RANS mode, and is based on the subgrid scale model in the Large-eddy simulation (LES) mode. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology which is less expensive than LES. Flow properties at the edge of base, such as boundary layer thickness, momentum thickness and skin fraction are compared with Dutton et al [experimental data to proper prediction of base flowfiled. From the present results, The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region and small eddy motions inside the recirculating region. Moreover, The present results of using an empirical constant $C_{DES}$ of 1.2 shows good agreement with experimental data than conventional empirical constant $C_{DES}$ of 0.65.

Large eddy simulation of turbulent flows in a grooved channel (홈이 파진 평판 사이 난류유동의 대와동모사 (LES))

  • Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.34-49
    • /
    • 1998
  • In this study, turbulent flows in a grooved channel are numerically investigated by Large Eddy Simulation (LES). Especially, a parametric study is carried out to study effects of length and depth of a groove on large-scale flow structures. For one test case, comparison of LES results with those of DNS reveals a good agreement even though the number of grid points of LES is only 6.5% of that of DNS. This confirms that LES is a suitable tool for a parametric study of turbulent flows. The subsequent parametric study using LES shows that the large-scale turbulent structures are significantly affected by the geometry of the groove. Especially, when the length of the groove is short such that the recirculation region occupies the entire groove, the turbulent flow in the groove becomes very weak in both mean and fluctuation quantities.

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

Large Eddy Simulation of Free Motion of Marine Riser using OpenFOAM (오픈폼을 활용한 자유진동하는 라이저 주위 유동의 LES 해석)

  • Jung, Jae-Hwan;Jeong, Kwang-Leol;Gill, Jae-Heung;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.387-393
    • /
    • 2019
  • In this study, the free motion of a riser due to vortex shedding was numerically simulated with Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) turbulence models. A numerical simulation program was developed by applying the Rhie-Chow interpolation method to the pressure correction of the OpenFOAM standard solver pimpleDyMFoam. To verify the developed program, the vortex shedding around the fixed riser at Re = 3900 was calculated, and the results were compared with the existing experimental and numerical data. Moreover, the vortex-induced vibration of a riser supported by a linear spring was numerically simulated while varying the spring constant. The results are compared with published direct numerical simulation (DNS) results. The present calculation results show that the numerical method is appropriate for simulating the vortex-induced motion of a riser, including lock-in phenomena.